期刊文献+

微重力环境下水平方管内气液两相流动特性的数值研究 被引量:4

Numerical Study on Flow Characteristics of Gas-liquid Two Phase Flow Under Microgravity in Horizontal Square Channel
下载PDF
导出
摘要 基于数值方法,采用流体体积函数模型(volume of fluid,VOF)对10-4g0和g0重力环境下水平方管内空气-水两相流和制冷剂R134a蒸汽-液体两相流进行数值模拟,分别得到泡状流、弹状流、搅混流和环状流4种典型流型,但两种混合物在流型上存在较大差异。通过对数值结果的统计分析,得到两种混合物在不同重力环境下的压降分布。结果显示,微重力下两种混合物的压降均大于常重力环境,且压降都随气、液速度的增大而增大;相同工况下,空气-水的压降大于R134a蒸汽-液体两相流的压降。将得到的压降数值结果与均相流模型、Friedel模型和Chisholm模型依次进行对比。重新根据分液相雷诺数(Reynolds)将流动分为层流区、过渡区和紊流区,并对Chisholm关系式进行了修正。结果显示,修正后的压降模型能较好地预测微重力环境下的气液两相流动压降。根据汽液两相流动特性,分析了发生以上现象的原因。 ABSTRACT:We investigated the gas-liquid two phase flow under microgravity (10-4g0) and normal gravity (g0) by numerical simulation based on the volume of fluid (VOF) method. Two kinds of mixtures were taken into account, including air-water mixture and R134a vapor-liquid mixture. Four typical flow patterns (bubble flow, slug flow, churn flow and annular flow) are obtained. However, different mixture presents different characteristics on flow pattern. On the basis of numerical results, the pressure drop distributions of mixtures under different gravity are given. Numerical results indicate that pressure drop increases with the increasing velocity of gas or liquid. Compared with the normal gravity, pressure drop under microgravity is bigger. Pressure drop of R134a vapor-liquid mixture is smaller than air-water mixture in the same case. Moreover, comparisons between numerical pressure drop and different models (homogeneous flow model, Friedel model and Chisholm model) were given. It is obvious to see that, different mixtures present distinct flow states under certain liquid Reynolds number. Modified Chisholm equations were proposed in laminar region, transition region and turbulent region. The results show that the modified Chisholm correlation can better predict gas-liquid two phase flow pressure drops under microgravity than other models. Based on the characters of gas-liquid two phase flow, reasons of phenomenon appeared were analyzed.
作者 周云龙 黄娜
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第26期4500-4507,共8页 Proceedings of the CSEE
关键词 微重力 两相流 压降 流体体积函数(VOF) 数值分析 volume of fluid(VOF) microgravity two-phase flow pressure drop numerical simulation
  • 相关文献

参考文献19

  • 1Rezkallah K S. Recent progress in the studies oftwo-phase flow at microgravity conditions[J] . Advances inSpace Research, 1995. 16(7): 123-132.
  • 2Hxirlbert K M,White L C,Best F R,et al. Scalingtwo-phase flows to Mars and Moon gravity conditions[J]. International Journal of Multiphase Flow, 2004,30(4): 351-368.
  • 3Park C, Sunada E. Vapor compression hybrid two-phaseloop technology for Lunar surface applications [J]- AIPConference Proceedings,2008,969(2): 37-43.
  • 4赵建福.微重力条件下气/液两相流流型的研究进展[J].力学进展,1999,29(3):369-382. 被引量:32
  • 5Clarke N N, Rezkallah K S. A study of drift velocity inbubbly two-phase flow under microgravity conditions[J]. International Journal of Multiphase Flow, 2001,27(9): 1533-1554.
  • 6Gabriel K S _ Microgravity two-phase flow and heattransfer[M]. Berlin: Springer, 2007: 96-102.
  • 7Yang A. Investigation of liquid-gas interfacial shapes inreduced gravitational environments[J] . InternationalJournal of Mechanical Science, 2008,50(8): 1304-1315.
  • 8周云龙,王红波.矩形小通道内气液两相流垂直向上流动特性[J].化工学报,2011,62(5):1226-1232. 被引量:14
  • 9周云龙,李洪伟,杨悦.气液两相流图像区域相似值序列的混沌特性研究[J].中国电机工程学报,2011,31(20):88-94. 被引量:1
  • 10赵建福,解京昌,林海,胡文瑞,A V Ivanov,A Yu Belyaev.部分重力条件下气液两相流型研究[J].工程热物理学报,2004,25(1):85-87. 被引量:6

二级参考文献50

共引文献72

同被引文献43

  • 1陈明,伍建林,王建华.气液固三相管流耦合水击振动特性的参数影响分析[J].工程力学,2015,32(2):233-240. 被引量:6
  • 2赵建福,K S Gabriel.微重力条件下90°弯管气液两相流型研究[J].工程热物理学报,2004,25(5):801-803. 被引量:3
  • 3周云龙,段晓宁,陈晓波,洪文鹏,孙斌.基于考虑含气量变化浆体水击模型的复合管道水击数值计算[J].水动力学研究与进展(A辑),2006,21(1):107-112. 被引量:5
  • 4Fu T T, Ma Y G, Funfschiling D, Zhu C Y, Li H Z. Squeezing-to- dripping transition for bubble formation in a microfluidic T-junction [J]. Chemical Engineering Science, 2010, 65(12): 3739-3748.
  • 5Song Zhengmei(宋正梅). Research about the technique of microchannel cooling on active phased array antenna. [D]. Xi'an: Xidian University, 2013.
  • 6Wen M Y, Ho C Y, Jang J K. Boiling heat transfer of refrigerant R-600a/R-290-oil mixtures in the serpentine small diameter U-tubes [J]. Applied Thermal Engineering, 2007, 27(14/15): 2353-2362.
  • 7Donaldson A A, Kirpalani D M, Macchi A. Curvature induced flow pattern transitions in serpentine minichannels. [J]. International Journal of Multiphase Flow, 2011, 37: 429-439.
  • 8Ribatski G, Tibirica C B. Flow patterns and bubble departure fundamental characteristics during flow boiling in microscale channels [J]. Experimental Thermal and Fluid Science, 2014, 59: 152-165.
  • 9Mehendale S S, Shah R K, Jacobi A M. Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design [J]. Applied Mechanics Reviews, 2000, 53(7): 175-193.
  • 10Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchannels [J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 389-407.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部