期刊文献+

CHARACTERISTICS OF MIDDLE EAST JET STREAM DURING SEASONAL TRANSITION AND ITS RELATION WITH INDIAN SUMMER MONSOON ONSET 被引量:4

CHARACTERISTICS OF MIDDLE EAST JET STREAM DURING SEASONAL TRANSITION AND ITS RELATION WITH INDIAN SUMMER MONSOON ONSET
下载PDF
导出
摘要 By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa. By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream (MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67th pentad to the 24th pentad the following year; when MEJS is weak, it is at 45°N from the 38th pentad to the 44th pentad. The first Empirical Orthogonal Function (EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31st pentad is the spring-summer transition of MEJS, and the 54th-61st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference (SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.
出处 《Journal of Tropical Meteorology》 SCIE 2014年第3期208-217,共10页 热带气象学报(英文版)
基金 Project of Natural Science Foundation of China(41205035,40905045,40775059) National Basic Research and Development Program of China(2013CB430202) NSF of Jiangsu Higher Education Institutions(13KJB170013) Special Scientific Research Fund of Public Welfare Industries of China(GYHY201306028) Qing Lan Project Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
关键词 Middle East jet stream seasonal transition characteristics thermal effect onset date of Indiansummer monsoon 大气科学 气候学 气候类型 热带气象学
  • 相关文献

参考文献9

二级参考文献90

共引文献95

同被引文献102

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部