期刊文献+

限电情况下风电场内机组最优组合方案研究 被引量:3

Research on optimal units commitment of wind farm in the situation of intentional power brownout
下载PDF
导出
摘要 近年来,由于风电渗透率持续增加而电网消纳能力有限,造成风机产能过剩,"弃风"现象开始凸显。为保证电力系统的稳定运行,要求风电场主动参与系统调频,根据电网调度部门指令控制其功率输出。将风速预测信息与尾流效应模型结合起来,预测场内每台机组的最大出力。在此基础上,以提高风电场效益为目标,建立了限电情况下风电场内机组组合问题的数学模型,并利用改进的粒子群算法进行优化研究,得到限电情况下风电场内机组最优组合方案。最后通过实际算例进行仿真分析,验证了所提出方法的可行性和优越性。 In recent years, penetration of wind power continuously increases but wind power can not be completely consumed by the grid, it leads to energy waste in a large scale and wind curtailment becomes prominent. To insure the grid' s stability, wind farms must actively take on the task of frequency modulation and control the power outputs in keeping with requests from power grid dispatch center. This paper predicts the maximum power output of each turbine by the wind speed forecasting information and wake model then presents a mathematical model and adopt a modified particle swarm optimization algorithm to solve the unit commitment problem for the benefit of the wind farm. The actual case examination is carried out and the result testing result indicates the feasibility and advancement of the proposed method.
出处 《可再生能源》 CAS 北大核心 2014年第9期1319-1326,共8页 Renewable Energy Resources
基金 中丹国际科技合作专项项目(2014DFG62530) 教育部留学回国人员科研启动基金(2012-940)
关键词 风电场 弃风 风速预测 机组组合 粒子群算法 wind farm wind curtailment wind speed forecast unit commitment particle swarm optimization algorithm
  • 相关文献

参考文献17

  • 1Bueno C,Carta J A.Wind powered pumped hydro stor-age systems,a means of increasing the penetration of renewable energy in the Canary Islands [J].Renewable and Sustainable Energy Reviews,2006,10(4):312-340.
  • 2Jensen N O.A note on wind generator interaction [R].Denmark:Risφ National Laboratory,Roskilde,1984.
  • 3Javier Serrao Gonzalez,Angel G Gonzalez Rodriguez,Jose Castro Mora,et al.Optimization of wind farm tur-bines layout using an evaluative algorithm[J].Renewable energy,2010,35:1671-1681.
  • 4Zou Xin,Wang Zijing,Wang Xifan,et al.Studies on models and algorithms of the power system probabilistic production simulation integrated with wind farm [A].Power & Energy Society General Meeting [C].Xi'an:IEEE,2009.1-7.
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization [A].Neural Networks,1995 Proceedings IEEE Interna-tional Conference [C].Piscataway,IEEE,1995.1942-1948.
  • 6国家电力监管委员会.风电、光伏发电情况监管报告[R].北京:国家电力监管委员会,2010.
  • 7Sorensen P,Hansen A,Thomsen K,et al.Operation and control of large wind turbines and wind farms [P].Risφ National Laboratory Report,2005.
  • 8Jiang Chuanwen,Bompard E.A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment[J].Energy Conversion and Management,2005,46(17):2689-2696.
  • 9Eberhart R,Shi Y,Kennedy J.Swarm Intelligence [M].San Mateo:Morgan Kanfmann,2001.
  • 10陈皓勇,王锡凡.机组组合问题的优化方法综述[J].电力系统自动化,1999,23(4):51-56. 被引量:140

二级参考文献107

共引文献330

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部