期刊文献+

酿酒酵母组蛋白H3 K4L和K36L突变对细胞生长和GAL1、SSA3、PHO5表达的影响

Effects of histone H3 K4L and K36L mutations on the cell growth and the transcription of GAL1, SSA3 and PHO5 in Saccharomyces cerevisiae
下载PDF
导出
摘要 组蛋白甲基化和乙酰化修饰对基因表达和细胞生长至关重要,为揭示组蛋白H3第4、36位赖氨酸(K)修饰对酵母生长和诱导基因表达的重要性及两位点功能差异,文章构建了两位点单独或共同突变为亮氨酸(L)的组蛋白突变株S4、S36和D436,对其在正常、半乳糖为单一碳源、高温、高盐等条件下的生长及GAL1、SSA3和PHO5表达进行比较。结果显示:D436对高温最敏感,各突变株对咖啡因显著敏感;3个突变株在高温、高盐、6-AU、咖啡因存在时的生长及GAL1、SSA3和PHO5的激活均明显慢于野生型;S4在高温、高盐条件下生长及GAL1激活慢于S36。H3-K4和H3-K36的翻译后修饰对细胞生长和适应不利环境非常重要,在对高温等逆境快速适应上,K4比K36更重要,组蛋白突变株的表型缺陷是因该条件下细胞生存所必需的诱导基因表达延迟所致,同一位点突变对不同基因表达有不同影响。3个突变株的缺陷表型严格上应是相应位点突变导致组蛋白修饰模式改变所造成的综合影响。 Post-translational modifications of histones, such as acetylation and methylation, have a pivotal role in regu- lating gene expression and cell growth. To elucidate the different roles and importance of H3K4 and H3K36 modifications in expression of inducible genes such as Call, SSA3, PH05 and the growth of yeast cell, we constructed three different yeast mutant strains carrying mutations of lysine 4, 36, or both to leucine in the histone H3 tail. Real-time PCR and sensi-five assay under the conditions of high temperature, NaC1, caffeine, 6-AU, or other conditions were carried out to charac- terize the effects of these mutations on cell growth and transcription levels of GALl, SSA3 and PH05. The results showed that three histone methylation mutants exhibited more severe growth defects and slower activation of GALl, SSA3 and PH05 than those of wild type; H3K4L/H3K36L double mutant strain D436 has the most severe phenotype. H3K4L mutants $4 exhibited more severe defects than those of H3K36L $36 mutants, especially at high temperature and high NaCI stresses. These results show that H3K4L and H3K36L are important for the growth and survival of yeast in unfavorable conditions, and that different mutations have different effects on the expression of single inducible gene, whereas the same mutation has different effects on the activation of different inducible genes in vivo. The post-translational modification of H3K4 is more important than H3K36 on the adaptation to harsh condition for yeast cell. The growth defects of histone mutant strains might arise from the slow activation of inducible gene essential for survival at harsh conditions.
出处 《遗传》 CAS CSCD 北大核心 2014年第8期827-834,共8页 Hereditas(Beijing)
基金 国家自然科学基金项目(编号:30600343) 河南省高校科技创新团队支持计划(编号:13IRTSTHN009)资助
关键词 组蛋白甲基化 赖氨酸 突变株 细胞生长 诱导基因 histone methylation lysine mutant strain cell growth inducible gene
  • 相关文献

参考文献25

  • 1Santos-Rosa H,Schneider R,Bannister AJ,Sherriff J,Bernstein BE,Emre NC,Schreiber SL,Mellor J,Kouzarides T.Active genes are tri-methylated at K4 of histone H3.Nature,2002,419(6905):407-411.
  • 2Krogan NJ,Kim M,Tong A,Golshani A,Cagney G,Canadien V,Richards DP,Beattie BK,Emili A,Boone C,Shilatifard A,Buratowski S,Greenblatt J.Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase Ⅱ.Mol Cell Biol,2003,23(12):4207-4218.
  • 3Bannister AJ,Schneider R,Myers FA,Thorne AW,Crane-Robinson C,Kouzarides T.Spatial distribution of di-and tri-methyl lysine 36 of histone H3 at active genes.J Biol Chem,2005,280(18):17732-17736.
  • 4杜婷婷,黄秋花.组蛋白赖氨酸甲基化在表观遗传调控中的作用[J].遗传,2007,29(4):387-392. 被引量:10
  • 5Grunstein M.Nucleosomes:regulators of transcription.Trends Genet,1990,6(12):395-400.
  • 6Smith MM.Histone structure and function.Curr Opin Cell Biol,1991,3(3):429-437.
  • 7Roth SY.Chromatin-mediated transcriptional repression in yeast.Curr Opin Genet Dev,1995,5(2):168-173.
  • 8Sambrook J,Frisch EF,Maniatis T.Molecular Cloning:A Laboratory Manual,2nd ed.New York:Cold Spring Harbor Laboratory Press,1989:19-20,55-56,880-885.
  • 9Hill J,Donald KA,Griffiths DE,Donald G.DMSO-enhanced whole cell yeast transformation.Nucleic Acids Res,1991,19(20):5791.
  • 10李芬,田树娟.双元载体提供组蛋白H3/H4拷贝1的elp3Δ菌株的构建[J].河南师范大学学报(自然科学版),2008,36(2):95-98. 被引量:1

二级参考文献67

  • 1李芬,韩秋菊,罗巅辉,陆军,黄百渠.人Elongator复合物Elp4亚基基因可部分补偿酵母ELP4缺失菌株的生长缺陷[J].Acta Genetica Sinica,2004,31(7):668-674. 被引量:3
  • 2李芬,韩秋菊,陆军,黄百渠.人Elongator复合物Elp3亚基基因可显著补偿酵母elp3缺失菌株的生长缺陷[J].实验生物学报,2005,38(5):369-376. 被引量:2
  • 3Turner B M. Histone acetylation and control of gene expression [J]. J CclISci, 1991,99(Pt 1): 13-20.
  • 4Kuo M H, Brownell J E, Sobel R E, et al. Transcription linked acetylation by Gcn5p of histones H3 and H4 at specific lysines [J]. Nature, 1996, 383 (6597): 269-272.
  • 5Roth S Y, Allis C D. Histone acetylation and ehromatin assembly: a single escort, multiple dances? [J]. Cell, 1996, 87(1): 5-8.
  • 6Zhang W, Bone J R, Edmondson D G, et al. Essential and redundant functions of histone aeetylation revealed by mutation of target lysines and loss of the Gcn5p aeetyltransferase [ J]. EMBO J, 1998, 17(11) : 3155-3167.
  • 7Sobel R E, Cook R G, Perry C A, et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4 [J]. Proc Natl Acad Sci USA, 1995, 92(4) : 1237- 1241.
  • 8Turner B M, Oecoding the nucleosome [J]. Cell, 1993, 75(1) : 5-8.
  • 9Johnson C A, O' Neill L P, Mitchell A, et al. Distinctive patterns of histone acetylation are associated with defined sequence elements within heterochromatic and euchromatic regions of the human genome [J]. Nucleic Acids Res, 1998, 26 (4) : 994-1001.
  • 10Wittschieben B O, Fellows J, Du W, et al. Overlapping roles for the histone acetyttransferase activities of SAGA and elongator in vivo [J]. EMBO J, 2000, 19(12): 3060-3068.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部