期刊文献+

界面设计对Si_p/Al复合材料组织和性能的影响 被引量:5

Effects of Interface Design on Microstructure and Properties of Si_p/Al Composites
下载PDF
导出
摘要 采用真空气压浸渗方法制备Sip/Al复合材料,研究硅颗粒表面炭化和氮化处理对Sip/Al复合材料组织结构和性能的影响。结果表明:炭化和氮化处理可在硅颗粒表面生成炭化硅层和氮化硅层,能有效地阻止高温制备时铝对硅的溶解,提高复合材料的性能。经1300℃炭化处理2h后制得的体积分数为50%的Sip/Al复合材料,其热导率达139.98W·(m·K)-1,相比未作处理的提高约30%;经1200℃氮化处理2h后制得的体积分数为50%的Sip/Al复合材料,其热导率为128.80W·(m·K)-1,相比未作处理的提高约20%。 Sip/A1 composites were prepared by vacuum pressure impregnation method, and the effects of carbonization and nitrogenization of Si on the microstructure and properties of Sip/A1 composites were studied. The results show that silicon carbide and silicon nitride layers come into being on the silicon particles during the carbonization and nitrogenization process, which can prevent Si from being dissolved by aluminum at high temperature and improve the performance of composites. As a result, marked improvements in thermo-physical properties of the Sip/A1 composites are achieved. Enhancing thermal conductivity about 139.98W·(m·K) 1 and 128.80W ·(m·K)-1 are gained after the car- bonization of Si at 1300℃ and nitrogenization of Si at 1200℃ for two hours, respectively, which are about 30% percent and 20% percent higher than that of Sip/A1 composites without carbonization and nitrogenization.
出处 《材料工程》 EI CAS CSCD 北大核心 2014年第8期61-66,共6页 Journal of Materials Engineering
关键词 SIP AL复合材料 界面设计 微观组织 热导率 Sip/A1 composite interface design microstructure thermal conductivity
  • 相关文献

参考文献17

二级参考文献71

共引文献76

同被引文献49

  • 1冯曦,郑子樵,李世晨,杨培勇.热压法制备Si-Al电子封装材料及其性能[J].稀有金属,2005,29(1):11-15. 被引量:13
  • 2刘红伟,张永安,朱宝宏,王锋,魏衍广,熊柏青.喷射成形70Si30Al电子封装材料致密化处理及组织性能研究[J].稀有金属,2007,31(4):446-450. 被引量:10
  • 3SRIVATSAN T S, IBRAHIM I A, MOHAMED F A, et al. Processing techniques for particulate-reinforced metal aluminum matrix eomposites[J]. Journal of Materials Science, 1991, 26 (22) :5965--5978.
  • 4PARK B G, CROSKY A G, HELLIER A K. Fracture toughness of mierosphere AlzOa A1 particulate metal matrix composites [J]. Composites Part B: Engineering, 2008, 39(7-- 8) : 1270-- 1279.
  • 5PANDEY A B, MAJUMDAR B S, MIRACLE D B. Deformation and fracture of a particle-reinforced aluminum alloy composite: part I. experiments[J]. Metall Mater Trans A, 2000, 31(13):921--936.
  • 6CHAKRABORTY S P, BANERJEE S, SHARMA I G, et al. Studies on the synthesis and characterization of a molybdenum- based alloy[J].Journal of Alloys and Compounds, 2009, 477 (1--2) :256--261.
  • 7BAUGHMAN R H, ZAKHIDOV A A, HEER W A. Carbon nanotubes-the route towards applications [J ]. Science, 2002,297 (5582) :787-792.
  • 8BAKSHI S R,AGARWAI. A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon,2011,49(2):533-544.
  • 9HOYD D J. Particle reinforced aluminium and magnesium matrix eomposites[J] . International Materials Reviews, 1994,39 ( 1 ) : 1 -2.
  • 10BAKSHI S R,I.AHIRI D,AGARWAL A. Carbon nanotube rein- forced metal matrix composites-a review[J]. International Materi- als Reviews,2010,55:41 -64.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部