期刊文献+

混合分解和强度帕累托多目标进化算法 被引量:4

Hybrid decomposition and strength Pareto multi-objective evolutionary algorithm
下载PDF
导出
摘要 在多目标进化优化中,使用分解策略的基于分解的多目标进化算法(MOEA/D)时间复杂度低,使用强度帕累托进化算法-2(SPEA2)能得到分布均匀的解集。结合这两种策略,提出一种新的多目标进化算法用于求解具有复杂、不连续的帕累托前沿的多目标优化问题(MOP)。首先,利用分解策略快速逼近帕累托前沿;然后,利用强度帕累托策略使解集均匀分布在帕累托前沿,利用解集重置分解策略中的权重向量集,使其适配于特定的帕累托前沿;最后,利用分解策略进一步逼近帕累托前沿。使用的反向世代距离(IGD)作为度量标准,将新算法与MOEA/D、SPEA2和paλ-MOEA/D在12个基准问题上进行性能对比。实验结果表明该算法性能在7个基准问题上最优,在5个基准问题上接近于最优,且无论MOP的帕累托前沿是简单或复杂、连续或不连续的,该算法均能生成分布均匀的解集。 In multi-objective evolutionary optimization, Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) with decomposition strategy is of low computational complexity, while Strength Pareto Evolutionary Algorithm-2 (SPEA2) can generate solution sets distributed uniformly. By combining these two strategies, a novel multi-objective evolutionary algorithm was proposed for solving Multi-objective Optimization Problem (MOP) with complex and discontinuous Pareto fronts in this paper. In the proposed algorithm, decomposition strategy was firstly used to make the solution set quickly approach the Pareto front; then strength Pareto strategy was used to make the solution set uniformly distributed along the Pareto front, and the weight vector set in decomposition strategy was rearranged based on this solution set, with a consequence of the weight vector set adapted to a particular Pareto front; and finally, decomposition strategy was used again to make the solution set further approach the Pareto front. In terms of Inverted Generational Distance (IGD) metric, the novel algorithm was compared with three state-of-art algorithms, MOEA/D, SPEA2 and pak-MOEA/D on twelve benchmark problems. The experimental results indicate that the performance of the proposed algorithm is optimal on seven benchmark problems, and is approximately optimal on five benchmark problems. Moreover, the algorithm can generate uniformly distributed solution sets whether Pareto fronts of MOP are simple or complex, continuous or discontinuous.
出处 《计算机应用》 CSCD 北大核心 2014年第10期2880-2885,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61364025) 江西省教育厅科技项目(GJJ14742)
关键词 分解 强度帕累托 进化算法 多目标优化 帕累托最优 decomposition strength Pareto evolutionary algorithm multi-objective optimization Pareto optimality
  • 相关文献

参考文献16

  • 1COELLO COELLO C A, LAMONT G B, van VELDHUIZEN D A. Evolutionary algorithms for solving multi-objective problems [ M]. 2nd ed. Berlin: Springer-Verlag, 2007.
  • 2ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach [ J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4) : 257 - 271.
  • 3ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm [ EB/OL] . [ 2014-01-12] . http://www, kddresearch, org/Courses/Spring-2007/CIS830/Hand- outs/P8, pdf.
  • 4CORNED W, JERRAM N R, KNOWLES J D, et al. PESA- Ⅱ : region-based selection in evolutionary" multiobjective optimization [ C]// Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco: Morgan Kaufmann Publishers, 2001: 283 - 290.
  • 5DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II [ J]. IEEE Transactions on Evolutionary Computation, 2002,6(2) : 182 - 197.
  • 6QINGFU Z, HUI L. MOEA/D: a muhiobjective evolutionary algo- rithm based on decomposition [ J]. IEEE Transactions on Evolution- ary Computation, 2007, 11 (6) : 712 - 731.
  • 7HUI L, QINGFU Z. Muhiobjective optimization problems with com- plicated Pareto sets, MOEA/D and NSGA-Ⅱ [ J]. IEEE Transac- tions on Evolutionary Computation, 2009, 13(2) : 284 -302.
  • 8MIETTINEN K M. Nonlinear multiobjective optimization [ M]. Nor- well: Kluwer Academic Publishers, 1999.
  • 9GU F Q, LIU H L. A novel weight design in multi-objective evolu- tionary algorithm [ C] // Proceedings of the 2010 International Con- ference on Computational Intelligence and Security. Washington, DC: IEEE Computer Society, 2010:137 - 141.
  • 10JIANG S, CAI Z, ZHANG J, et al. Multiobjective optimization by decomposition with Pareto-adaptive weight vectors [ C]// Proceed- ings of the 2011 7th International Conference on Natural Computa- tion. Piscataway: IEEE Press, 2011,3:1260-1264.

共引文献3

同被引文献38

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部