期刊文献+

多尺度特征融合的图嵌入方法

Graph embedding method integrated with multiscale features
下载PDF
导出
摘要 针对结构模式识别领域中通用图嵌入方法缺乏且计算复杂度较高的问题,基于空间句法理论提出一种融合多尺度特征的图嵌入方法。通过提取图的节点数、边数和智能度等全局特征、节点拓扑特征、边领域特征差异度和边拓扑特征差异度等局部特征和节点与边上的数值属性和符号属性等细节特征,利用多尺度直方图统计的方法构造描述图特征的特征向量,以此将桥梁将结构模式识别问题转化为统计模式识别问题,进而借助支持向量机(SVM)实现图的分类识别。实验结果表明,所提出的图嵌入方法在不同的图数据集上均具有较高的分类识别率。与其他图嵌入方法相比,该方法对图的拓扑表达能力强,并且可融合图的领域方面的非拓扑特征,通用性较好,计算复杂度较低。 In the domain of structural pattern recognition, the existing graph embedding methods lack versatility and have high computation complexity. A new graph embedding method integrated with muhiseale features based on space syntax theory was proposed to solve this problem. This paper extracted the global, local and detail features to construct feature vector depicting the graph feature by muhiscale histogram. The global features included vertex number, edge number, and intelligible degree. The local features referred to node topological feature, edge domain feature's dissimilarity and edge topological feature's dissimilarity. The detail features comprised numerical and symbolic attributes on vertex and edge. In this way, the structural pattern recognition was converted into statistical pattern recognition, thus Support Vector Machine (SVM) could be applied to achieve graph classification. The experimental results show that the proposed graph embedding method can achieve higher classifying accuracy in different graph datasets. Compared with other graph embedding methods, the proposed method can adequately render the graph's topology, merge the non-topological features in terms of the graph's domain property, and it has a favorable universality and low computation complexity.
出处 《计算机应用》 CSCD 北大核心 2014年第10期2891-2894,2907,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61373112 51348002 50878176) 陕西省教育厅专项科研项目(2013JK1157) 西安建筑科技大学青年基金资助项目(QN1232)
关键词 结构模式识别 图嵌入 空间句法 拓扑 统计模式识别 structural pattern recognition graph embedding space syntax topology statistical pattern recognition
  • 相关文献

参考文献12

  • 1南敬昌,刘元安,李新春,高锦春.记忆效应非线性功放扩展Volterra模型分析与构建[J].电子与信息学报,2008,30(8):2021-2024. 被引量:10
  • 2LIU T, BOUMAIZA S, GHANNOUCHI F M. Augmented Hammer- stein predistorter for linearization of broad-band wireless transmitters [ J]. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(4) : 1340 - 1349.
  • 3MORGAN D R, MA Z, KIM J, et a/. A generalized memory polynomi- al model for digital predistortion of RF power amplifiers [ J]. IEEE Transactions on Signal Processing, 2006, 54(10) : 3852 - 386.
  • 4XU J, YAGOUB M C E, DING R, et al. Neural-based dynamic modeling of nonlinear microwave circuits [ J]. IEEE Transactions on Microwave Theory and Techniques, 2002,50(12):2769 -2780.
  • 5RAWAT M, GHANNOUCHI F M. A mutual distortion and impair- ment compensator for wideband direct-conversion transmitters using neural networks [ J]. IEEE Transactions on Microwave Theory andTechniques, 2012,58(2):168 -177.
  • 6RAWAT M, RAWAT K, GHANNOUCHI F M. Adaptive digital predis- tortion of wireless power amplifiers/transmitters using dynamic real-val- ued focused time-delay line neural networks [ J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1) : 95 - 104.
  • 7ISAKSSON M, WISELL D, RONNOW D. Wide-band dynamic modeling of power amplifiers using radial-basis function neural net- works [ J]. IEEE Transactions on Microwave Theory and Tech- niques, 2005, 53 (11) : 3422 - 3428.
  • 8LIU T J, BOUMAIZA S, GHANNOUCHI F M. Dynamic behavioral modeling of 3 G power amplifiers using real-valued time-delay neural networks [ J]. IEEE Transactions on Microwave Theory and Tech- niques, 2004, 52(3) : 1025 - 1033.
  • 9翟建锋,周健义,洪伟,张雷.有记忆效应的功放实数延时模糊神经网络模型[J].微波学报,2009,25(5):41-44. 被引量:9
  • 10ZHAI J, ZHOU J, ZHANG L, et al. Behavioral modeling of power amplifiers with dynamic fuzzy neural networks [ J]. IEEE Micro- wave and Wireless Components Letters, 2010, 20(9):528 -530.

二级参考文献37

  • 1Kenington P B. High Linearity RF Amplifier Design [ M]. Boston, MA: Artech House, 2000.
  • 2Zhu A, Wren M, Brazil T J. An efficient Volterra-based behavioral model for wideband RF power amplifiers[C]. IEEE MTT-S Int Microwave Symp Dig. PA, 2003. 787-790.
  • 3Schetzen A. The Volterra and Wiener Theories Nonlinear Systems[ M]. New York: Wiley, 1980.
  • 4Ding L, Zhou G T, Morgan D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Trans Commun, 2004, 52( 1 ) : 159-164.
  • 5Liu T J, Boumaiza D R, Ghannouchi M. Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks [ J ]. IEEE Trans Microwave Theory Tech, 2004, 52(3) : 1023-1033.
  • 6Isaksson M, Wisell D, Ronnow D. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks [J]. IEEE Trans Microwave Theory Tech, 2005, 53 ( 11 ) : 3422-3428.
  • 7Luongvinh D, Kwon Y. A Fully Recurrent Neural Network-Based Model for Predicting Spectral Regrowth of 3G Handset Power Amplifiers with Memory Effects [ J ]. IEEE Microwave and Wireless Components Letters, 2006, 16(11) : 621-623.
  • 8Lee K C, Gardner P. Neuro-fuzzy approach to adaptive digital predistortion [ J ]. Electron Lett, 2004, 40 ( 3 ) : 185-186.
  • 9Jang J S. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Trans Systems, Man, Cybem, 1993, 23(3) : 665-685.
  • 10Bezdec J C. Pattern Recognition with Fuzzy Objective Function Algorithms [ M ]. New York: Plenum Press, 1981.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部