期刊文献+

基于三视图约束的基础矩阵估计 被引量:1

Fundamental matrix estimation based on three-view constraint
下载PDF
导出
摘要 考虑到只依赖对极几何关系的匹配点余差并不能完全区分匹配点的正确与否,从而影响内点集选取的情况,提出基于三视图约束的基础矩阵估计算法。首先,使用传统随机抽样一致性(RANSAC)算法计算三视图的任意两对相邻图像间的基础矩阵,确定三视图中共有的匹配点对,并计算估计基础矩阵时非共用图像上的匹配点在共用图像上的极线;然后,计算两条极线的交点与共用图像上对应匹配点间的距离,以距离值的大小作为内点判断的依据,得到新的内点集。在新内点集的基础上,采用M估计算法重新计算基础矩阵。实验结果表明:该方法可以同时降低噪声和错误匹配对基础矩阵精确计算的影响,精度优于传统鲁棒性算法,使点到极线的距离限制在0.3个像素左右,而且计算结果具有稳定性,可以被广泛地应用到基于图像序列的三维重建和摄影测量等领域中。 The matching points can't be decided absolutely by its residuals just relying on epipolar geometry residuals, which influences the selection of optimum inlier set. So a novel fundamental matrix calculation algorithm was proposed based on three-view constraint. Firstly, the initial fundamental matrices were estimated by traditional RANdom SAmple Consensus (RANSAC) method. Then matching points existed in every view were selected, and the epipolar lines of points not in the common view were calculated in fundamental matrix estimation. Distances between the points in common view and the intersection of its matching points' epipolar lines were calculated. Under judgment based on the distances, a new optimum inlier set was obtained. Finally, the M-Estimators (ME) algorithm was used to calculate the fundamental matrices based on the new optimum inlier set. Through a mass of experiments in case of mismatching and noise, the results indicate that the algorithm can effectively reduce the influence of mismatch and noise on accurate calculation of fundamental matrices. It gets better accuracy than traditional robust algorithms by limiting distance between point and epipolar line to about 0.3 pixels, in addition, an improvement in stability. So, it can be widely applied to fields such as 3D reconstruction based on image sequence and photogrammetry.
出处 《计算机应用》 CSCD 北大核心 2014年第10期2930-2933,共4页 journal of Computer Applications
基金 国家863计划项目(2012AA121303)
关键词 对极几何 三视图约束 基础矩阵 鲁棒性 随机抽样一致性 epipolar geometry three-view constraint fundamental matrix robustness RANdom SAmple Consensus (RANSAC)
  • 相关文献

参考文献16

  • 1ARMANGUE X, SALVI J. Overall view regarding fundamental ma- trix estimation [ J]. Image and Vision Computing, 2003, 21 (2) : 200 - 205.
  • 2HARTLEY R. Projective reconstruction and invariants from multiple images [ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 1994, 16(10) : 1036 - 1040.
  • 3HARTLEY R. In defense of the eight-point algorithm [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (6) : 580 -593.
  • 4LUONG Q T, FAUGERAS O. Determining the fundamental matrix with planes: instability and new algorithms [ C] // Proceeding of the 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piseataway: IEEE Press, 1993:489-494.
  • 5TORR P, MURRAY D. The development and comparison of robust methods for estimating the fundamental matrix [ J]. International Journal of Computer Vision, 1997, 24(3) : 271 - 300.
  • 6鲁珊,雷英杰,孔韦韦,雷阳.基于概率抽样一致性的基础矩阵估计算法[J].控制与决策,2012,27(3):425-430. 被引量:16
  • 7CARRO A I, MORROS J R. Promeds: an adaptive robust funda- mental matrix estimation approach [ C]// Proceedings of the 2012 3DTV-Conference: the True Vision-Capture, Transmission and Display of 3D Video. Piscataway: IEEE Press, 2012:1 -4.
  • 8TORR P. Bayesian model estimation and selection for epipolar ge- ometry and generic manifold fitting [ J]. International Journal of Computer Vision, 2002, 50(1) : 35 -61.
  • 9LI Y, VELIPASALAR S, GURSOY M C. An improved evolution- ary algorithm for fundamental matrix estimation [ C]// Proceedings of the 10th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE Press, 2013:226 - 231.
  • 10CHAN K-H, TANG C-Y, WU Y-L, et al. Robust orthogonal par- ticle swarm optimization for estimating the fundamental matrix [ C] // Proceedings of the 2011 IEEE Visual Communications and Image Processing. Piscataway: IEEE Press, 2011 : 1 -4.

二级参考文献37

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2Pollefeys M, VanGool L, Vergauwen M, et al. Visual modeling with a hand-held camera[J]. Int J of Computer Vision, 2004, 59(3): 207-232.
  • 3Rousseeuw P J. Robust regression and outlier detection[R]. New York: John Wiley Sons, 1987.
  • 4Armangue X, Salvi J. Overall view regarding fundamental matrix estimation[J]. Image and Vision Computing, 2003, 21(2): 205-220.
  • 5Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communication of the ACM, 1981, 24(6): 381-395.
  • 6Stewart C V. Minpran: A new robust operator for computer vision[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(10): 925-938.
  • 7Torr P H S, Zisserman A. Mlesca: A new robust estimator with application to estimating image geometry[J].Computer Vision and Image Understanding, 2000, 78(1): 138-156.
  • 8Torr P H S, Murray D W. The development and comparison of robust methods for estimating the fundamental matrix[J]. Int J of Computer Vision, 1997, 24(3): 271-300.
  • 9Zhang Z Y. Determining the epipolar geometry and uncertainty: A review[J]. Int J of Computer Vision, 1998, 27(2): 161-195.
  • 10Cheng C M, Lai S H. A consensus sampling technique for fast and robust model fitting[J]. Pattern Recognition, 2009, 42: 1318-1329.

共引文献29

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部