期刊文献+

混合光子晶体等离子激元纳米微腔 被引量:5

Hybrid Plasmonic Photonic Crystal Nano Micro-Cavity
原文传递
导出
摘要 构建了一种三层混合光子晶体等离子体激元结构,分别为金属银(Ag)层,低折射率二氧化硅(SiO2)层和二维光子晶体层。这种混合光子晶体等离子体激元结构具有明显的横磁模(TM)模式带隙。在二维的光子晶体层的中心引入一个单元胞缺陷,形成缺陷腔结构。这种纳米尺度的光子晶体等离子体微腔的体积远小于传统介质的光学微腔,光子能量可以很好地被局域到低折射率层,实现了深亚波长尺度下的对光的限制。通过改变该混合光子晶体等离子激元结构的参数,利用三维时域有限差分(3D-FDTD)方法,分析了这种混合光子晶体等离子微腔结构的光学特性。分析表明:这种纳米微腔具有极小的模式体积0.0141(λ/n)3和高的Q/V值。 A kind of three-tier hybrid plasmonic photonic crystal which is respectively constituted by a metal layer of silver(Ag),a low refractive index dielectric layer of SiO2 and a two-dimensional photonic crystal layer,is proposed.A clear plasmonic transverse-magnetic(TM)bandgap can be formed in this hybrid plasmonic photonic crystal.The defect cavity is constituted by introducing a unit cell defect in the center of the two-dimensional photonic crystal layer.The volume of the hybrid plasmonic photonic crystal micro-cavity is based on nano-scale,which is much less than the conventional optical micro-cavity,and the photon energy is well confined in the low index layer,so light can be limited at deep sub-wavelength scale.With some different structure parameters,the numerical analysis method of threedimensional finite difference time domain(3D-FDTD)is used to analyze the characteristics of this hybrid plasmonic photonic crystal.The analysis indicated that this kind of nano micro-cavity has an ultra-small mode volume of 0.0141(λ/n)3 and an ultra-high Q/V.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第9期163-168,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61172044 61201112)
关键词 光学器件 表面等离子体 光子晶体 纳米微腔 模式体积 optical devices surface plasma photonic crystal nano micro-cavity mode volume
  • 相关文献

参考文献5

二级参考文献112

  • 1J.Takahara,S.Yamagishi,H.Taki,A.Morimoto,and T.Kobayashi,Opt.Lett.22,475 (1997).
  • 2J.-C.Weeber,A.Dereux,C.Girard,J.R.Krenn,and J.-P.Goudonnet,Phys.Rev.B 60,9061 (1999).
  • 3J.R.Krenn,B.Lamprecht,H.Ditlbacher,G.Schider,M.Salerno,A.Leitner,and F.R.Aussenegg,Europhys.Lett.60,663 (2002).
  • 4M.L.Brongersma,J.W.Hartman,and H.A.Atwater,Phys.Rev.B 62,R16356 (2000).
  • 5S.A.Maier,P.G.Kik,H.A.Atwater,S.Meltzer,E.Harel,B.E.Koel,and A.A.G.Requicha,Nature Mater.2,229 (2003).
  • 6K.Tanaka and M.Tanaka,Appl.Phys.Lett.82,1158 (2003).
  • 7V.R.Almeida,Q.Xu,C.A.Barrios,and M.Lipson,Opt.Lett.29,1209 (2004).
  • 8E.N.Economou,Phys.Rev.182,539 (1969).
  • 9R.Zia,M.D.Selker,P.B.Catrysse,and M.L.Brongersma,J.Opt.Soc.Am.A 21,2442 (2004).
  • 10J.A.Dionne,L.A.Sweatlock,H.A.Atwater,and A.Polman,Phys.Rev.B 72,075405 (2005).

共引文献35

同被引文献58

  • 1胡小永,江萍,杨宏,龚旗煌.超快速可调谐有机光子晶体滤波器[J].激光与光电子学进展,2007,44(2):23-23. 被引量:1
  • 2Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics[J]. Phys Rev Lett, 58(20): 2059.
  • 3John S. Stronu localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 58(23): 2486.
  • 4Cai X B, Yang J, Hu G K. Optimization on microlattice materials for sound absorption by an integrated trans er matrix met o [J]. The Journal of the Acoustical Society of Amerrica, 2015, 137(4): 334-339.
  • 5Li Z Y, Ho K M. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides[J]. Physical Review B, 2003, 68(24): 245117.
  • 6Elson J M, Tran P. Dispersion in photonic media and diffraction from gratings: A different modal expansion for the R-matrix propagation technique[J]. JOSA A, 1995, 12(8): 1765-1771.
  • 7Abrishamian F, Morishita K. Transfer-matrix method based on a discrete coupling model for analyzing uniform and nonuniform codirectional fiber grating couplers[J]. Applied optics, 2012, 51(13): 2367-2372.
  • 8Stefanou N, Yannopapas V, Modinos A. Heterostructures of photonie crystals: Frequency bands and transmission coefficients [J]. Computer physics communications, 1998, 113(1): 49-77.
  • 9Stefanou N, Yannopapas V, Modinos A. MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals[J]. Computer physics communications, 2000, 132(1): 189-196.
  • 10Wang R, Wang X H, Gu B Y, et al.. Effects of shapes and orientations of scatters and lattice symmetries on the photonie band gap in two-dimensional photonic crystals[J]. Journal of Applied Physics, 2001, 90(9): 4307-4313.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部