期刊文献+

表面等离子体受激辐射放大领结型纳米天线的SERS单分子探测(英文) 被引量:5

Single Molecule Detection by SERS of a Spaser-Based Bowtie Nanoantenna
原文传递
导出
摘要 基于表面等离激子受激辐射放大原理,提出了一种应用于表面增强拉曼散射(SERS)单分子探测的领结型纳米天线结构。采用有限元方法(FEM)研究其局域表面等离子体共振(LSPR)和SERS特性。结果表明,该领结型纳米天线的局域表面等离子体共振强度和局域电场强度得到明显的增强,其散射截面为非表面等离激子受激辐射放大领结型纳米天线的1.1×104倍,局域电场强度为1×102倍。同时,该领结型纳米天线的表面增强拉曼散射增强因子最大达到1016,足以进行精确的单分子探测;整个纳米天线表面的增强因子也可达到1012,足以应用于单个生物分子的探测。 Based on the mechanism of the surface plasmon amplification by stimulated emissions of radiation(spaser),a bowtie nanoantenna structure is proposed for single molecule detection by surface enhanced Raman scattering(SERS).The localized surface plasmon resonance(LSPR)properties and the SERS characteristics of the bowtie nanoantenna are numerically analyzed by the finite element method(FEM).The results show that the LSPR strength and the local electric field intensity of the bowtie nanoantenna can be greatly amplified,and its scattering cross-section and electric field strength are up to 1.1×104 and 1×102 times of the non-spaser bowtie nanoantenna,respectively.Meantime,the maximum SERS enhancement factor is 1016 generated by the bowtie nanoantenna,which is enough to accurately detect a single molecule.Moreover,there is a higher SERS enhancement factor of 1012 on the entire surface of the nanoantenna,which is also sufficient for single bio-molecular detection.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第9期201-206,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61275153) 浙江省自然科学基金(LY12A04002) 浙江省"物理学重中之重学科"开放基金(xkzl1208) 宁波市自然科学基金(2012A610107) 宁波大学优秀学位论文培育基金(PY2012006)
关键词 光谱学 表面增强拉曼散射 单分子探测 表面等离子体 纳米材料 spectroscopy surface enhanced Raman scattering single molecule detection surface plasmons nanomaterials
  • 相关文献

参考文献26

  • 1M Martin. Surface-enhanced spectroscopy[J]. Rev Mod Phys, 1985, 57(3) : 783 - 826.
  • 2A Campion, P Kambhampati. Surface-enhanced Raman scattering [J]. Chem Soc Rev, 1998, 27(7): 241-250.
  • 3C L Haynes, A D McFarland, R P Van Duyne. Surface-enhanced Raman spectroscopy [J]. Analytical Chemistry, 2005, 77 (17) : 339 - 346.
  • 4K Keipp, Y Wang, H Kneipp, et al.. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys Rev Lett, 1997, 78(9): 1667-1670.
  • 5Z Li, Y Xia. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Lett, 2010, 10(1) : 243- 249.
  • 6P Muhlschlegel, H J Eiler, O J F Martin, et al.. Resonant optical antennas[J]. Science, 2005, 308(10): 1607-1609.
  • 7A Sundaramurthy, K B Crozier, G S Kino. Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles[J]. Phys Rev B, 2005, 72(16) : 165409.
  • 8J Britt Lassiter, Javier Aizpurua, Luis I Hernandez, et al.. Close encounters between two nanoshells[J]. Nano Lett, 2008, 8(4): 1212 - 1218.
  • 9H Xu, E J Bjerneld, M K/ill, et al.. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Phys Rev Lett, 1999, 83(21) : 4357 - 4360.
  • 10B Pettinger, B Ren, G Picardi, et al.. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy[J]. Phys Rev Lett, 2004, 92(9): 096101.

二级参考文献27

  • 1严琪华,鄢雨,邹海兴,路敦武,朱文菊.用空间滤波器改善光管式光学均匀器的性能[J].光学学报,1993,13(11):1052-1054. 被引量:1
  • 2孙志红.光子晶体局域缺陷模及耦合特性研究[J].光学学报,2005,25(7):984-989. 被引量:20
  • 3谷怀民,赵震声,贺龙海,张兆平,刘雁群,奚居雄.用于光刻的KrF准分子激光器[J].应用激光,1995,15(1):22-25. 被引量:2
  • 4E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and eleetronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062.
  • 5S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489.
  • 6H. Yakoyama, K. Nishi, T. Anan et al.. Controlling spontaneous emission and threshold less laser oscillation withoptical microcavities[J]. Opt. Quant. Electron., 1992, 24(2)/: 245-272.
  • 7J. C. Knight, J. Broeng, T. A. Birksetal.. Photonic band gap guidance in optical fiber [J]. Science, 1998, 282 (5393): 1476-1478.
  • 8Z. Q. Zhang, C. C. Wong, K. K. Fnng et al.. Obserbation of localized electeomagnetic waves in three dimensional networks of waveguides[J]. Phys. Rev. Lett., 1998, 81(25): 5540-5543.
  • 9P. Tran. Optical switching with a nonlinear photonic crystal: a numerical study [J]. Opt. Lett. , 1996, 21(15): 1138-1140.
  • 10S. Noda, M. Yokoyama, M. Imada et al.. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure[J]. Science, 2001, 293(5532): 1123-I125.

共引文献5

同被引文献32

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部