期刊文献+

Yb3+掺杂微结构光纤研制及对飞秒激光的放大实验 被引量:1

Preparation of Yb3+ Doped Microstructure Fiber and Amplification Experiment of Femtosecond Laser
原文传递
导出
摘要 采用高温等离子体非化学气相沉积技术与溶液掺杂相结合的方法制备了Yb3+掺杂微结构光纤。该光纤在波长976nm处的损耗为7.5dB/m,表明光纤对976nm波长的抽运光具有较好的吸收效率。为测试所制备光纤的激光性能,分析了该光纤的荧光特性,并搭建了后端抽运飞秒激光放大系统。采用3m光纤,以脉宽为150fs,重复频率为50MHz,中心波长为1030nm的飞秒激光作为种子光,成功将138mw的飞秒激光放大到605mw,且模场呈高斯分布。实验结果验证了该掺杂微结构光纤制备方法的可行性,并为未来探索掺杂微结构光纤制备的新方法,探索高功率Yb3+掺杂微结构光纤飞秒激光放大器和激光器打下了前期基础。 The Yb3+ doped microstructure fiber is prepared by the method of high temperature plasma non-chemical vapor deposition combined with the solution doping method. Its loss is 7.5 dB/m at the wavelength of 976 nm which indicates it has good absorption efficiency at this wavelength. In order to test its laser performance, fluorescence properties are measured and a back-end pump laser amplifier system is constructed. Using an optimized ,3 m length of the fiber and the seed femtosecond laser with 150 fs pulse width, 50 MHz repetition frequency and 10,30 nm central wavelength, the femtosecond laser of 138 mW is successfully amplified to 605 roW, and the mode is in conformity with the Gaussian distribution. The results verify the feasibility of the doped fiber preparation method, make contributions to the exploration of new preparation methods of doped microstructure fiber and lay the foundations for high power Yb3+ doped femtosecond laser amplifier and high power lasers.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第13期94-98,共5页 Acta Optica Sinica
基金 基金项目:国家973计划(2010CB327604)、国家自然科学基金(61377100)、广东省自然科学基金(S2013040015665)、高等学校博士学科点专项科研基金(20134407120014)
关键词 光纤光学 掺Yb3+微结构光纤 非化学气相沉积法 飞秒激光 光纤放大器 fiber optics Yb3+ doped microstructure fiber non-chemical vapor deposition method femtosecondlaser fiber amplifier
  • 相关文献

参考文献21

  • 1L Li. The advances and characteristics of high-power diode laser materials processing [J]. Optics and Lasers in Engineering, 2000, 34(4): 231-253.
  • 2Y Hori, I Kuromatsu, Y Sugimura. Photoselective vaporization of the prostate using high power (80 W) KTP laser: one year follow up of the first 101 patients in Japan [J]. International Journal of Urology, 2008, 15(12): 1067-1071.
  • 3刘泽金,肖虎,周朴,王小林,陈金宝.309W全光纤结构1018nm掺镱光纤激光器[J].中国激光,2013,40(2):140-140. 被引量:3
  • 4谢璐,陈瑰,王一礴,廖雷,蒋作文,戴能利,李进延.1018nm掺镱光纤激光器[J].光学学报,2013,33(7):218-223. 被引量:2
  • 5J Limpert, T Schreiber, S Nolte, et al.. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Opt Express, 2003, 11(7): 818-823.
  • 6王军利,吕志国,卜祥宝.稀土离子掺杂飞秒光纤激光器最新进展[J].激光与光电子学进展,2012,49(10):48-57. 被引量:6
  • 7Y J Song, M L Hu, C L Gu, et al.. Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion [J]. Laser Phys Lett, 2010, 7(3): 230-235.
  • 8李燕苹,刘江,师红星,孙若愚,王璞.高功率线偏振皮秒脉冲掺镱全光纤激光器[J].中国激光,2013,40(11):41-45. 被引量:2
  • 9J Liu, J Xu, P Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers [J]. IEEE Photon Technol Lett, 2012, 24(7): 539-541.
  • 10魏敬波,胡贵军,杜洋,李公羽,李莉.全光增益控制高功率光纤放大器[J].光学学报,2013,33(7):65-70. 被引量:6

二级参考文献103

  • 1李国玉,窦清影,刘艳格,张昊,张键,袁树忠,董孝义.基于高双折射光纤布拉格光栅的自动增益控制掺铒光纤放大器[J].光学学报,2006,26(9):1308-1312. 被引量:5
  • 2Li Benye, Jiang Lan. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Opt. & Laser Technol, 2011, 43(8): 1420-1423.
  • 3Grobnic, Dan, Mihailov, Stephen J. Self-packaged Type Ⅱ femtosecond IR laser induced fiber Bragg grating for temperature applications up to 1000℃ [C]. SPIE, 2011: 77530J.
  • 4A. Arai, J. Xu, G. C. Cho. Applications of femtosecond fiber lasers in material processingLCJ. 2011 Conference on Lasers Electro-Optics Europe & 12th European Quantum Electronics Conference, 2011. 1.
  • 5Lu Ping, Chen Qiying. Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications[J]. Opt. gett, 2011, 36(2): 268-270.
  • 6L. Shah, A. Y. Arai, S. M. Eatonet al. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and1 MHz repetition rate[J]. Opt. Express, 2005, 13(6): 1999-2006.
  • 7S. M. Eaton, W. Chen, L. Zhang et al. Telecom-band directional coupler written with femtosecond fiber laser[J]. IEEE Pho. Technol. Lett., 2006, 18(20): 2174-2176.
  • 8Bovatsek, A. Arai, C. B. Schaffer. Three-dimensional micromachining inside transparent materials using femtosecond laser pulses: new applications[C]. CLEOIQELS and PhAST Technical Digest, 2006, CThEE.
  • 9F. Yoshino, J. Bovatsek, A. Arai et al. High energy-high repetition rate fiber laser system for precision micromachining with fundamental and second harmonic wavelengths[J]. Laser Micro Nanoeng, 2006, 1(3): 258-263.
  • 10Honninger Clemens, Plotnerb Marco, Ortac Biilend et al. Femtosecond fiber laser system for medical applications[C]. SPIE, 2009, 7203: 72030W.

共引文献57

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部