期刊文献+

基于多尺度频域分析的遥感图像视觉显著区域检测 被引量:3

Saliency Region Detection of Remote Sensing Image Based on Multi-Scale Frequency Analyses
原文传递
导出
摘要 频域分析在遥感图像显著区域检测时可以很好地检测到显著区域的边缘部分,但是,往往在显著区域的内部产生误检测。提出了一种基于图像高频信息多尺度融合的视觉显著区域检测算法,将遥感图像进行多尺度的高斯金字塔分解,对分解后的每一级图像进行傅里叶变换,提取变换后的高频信息进行多尺度融合,获得最终显著图。结合该显著图提取遥感影像视觉显著区域不仅能够有效排除显著区域内部误检测问题,而且获得了更为精确的显著区域细节。此外,该算法较Itti模型具有更低计算复杂度。 Frequency domain analysis can well detect the edge of the salient region in the remote sensing imagery detecting. But it may mistakenly regard the inner parts of the saliency region as the background. A new algorithm based on multi-scale fusion techniques of the image high frequency information is proposed. First, the new algorithm creates several spatial scales of remote sensing images by using Gaussian pyramid. Then, for each scale, the new algorithm can get the high frequency information by the Fourier transform. Finally, the new algorithm gets the final saliency map by fusing the high frequency information on one scale. The new algorithm can not only well extract details of the salient region, but also effectively get rid of mistaken detection of the inner parts of the saliency region. Comparing with Itti model, the new algorithm has lower computation complexity.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第13期111-115,共5页 Acta Optica Sinica
基金 基金项目:国家自然科学基金(61071103)、中央高校基本科研业务费专项资金(2012LYB50)
关键词 遥感 图像处理 显著区域检测 频域分析 多级融合 remote sensing image processing saliency region detection frequency domain analysis multilevelfusion
  • 相关文献

参考文献12

  • 1Fan Jianchao, Han Min, Wang Jun. Single point iterative weighted fuzzy c-means clustering algorith for remote sensing image segmentation [J]. Pattern Recognition, 2009, 42(11): 2527-2540.
  • 2M Bouziani, K Goita, D He. Rule-based classification of a very high resolution image in an urban environment using multispectral segmentation guided by cartographic data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3198-3211.
  • 3L Itti, C Koch, E Niebur. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 4张鹏,王润生.基于视觉注意的遥感图像分析方法[J].电子与信息学报,2005,27(12):1855-1860. 被引量:10
  • 5R Palenichka, M Zaremba. Automatic extraction of control points for the registration of optical satellite and LiDAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2864-2879.
  • 6D Dai, W Yang. Satellite image classification via two-layer sparse coding with biased image representation [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 173-176.
  • 7Huaizu Jiang, Jingdong Wang, Zejian Yuan, et al.. Salient object detection: a discriminative regional feature integration approach [C]. Computer Vision and Pattern Recognition, 2013. 1-8.
  • 8P F Felzenszwalb, D P Huttenlocher. Efficient graph-based image segmentation [J]. International Journal of Computer Vision, 2004, 59(2): 167-181.
  • 9Xiaodi Hou, Liqiang Zhang. Saliency detection: a spectral residual approach [C]. Computer Vision and Pattern Recognition, 2007. 1-8.
  • 10Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,et al.. Frequency-tuned salient region detection [C]. Computer Vision and Pattern Recognition, 2009. 1597-1604.

二级参考文献25

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2Itti L, Koch C, Niebur E. A model of saliencybased vi- sual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254 - 1259.
  • 3Zhang D, Islam M, Lu G. A review on automatic image annotation techniques. Pattern Recognition, 2012, 45(1): 346-362.
  • 4Ayadi M, Kamel M, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognition, 2011, 44(3): 572-587.
  • 5Toet A. Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2131-2146.
  • 6Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 21st Annual Conference on Neural Infor- mation Processing Systems. Vancouver, Canada: The MIT Press, 2007. 545-552.
  • 7Achanta R, Estrada F, Wils P, Susstrunk S. Salient region detection and segmentation. In: Proceedings of the 6th Inter- national Conference on Computer Vision Systems. Santorini, Greece: Springer, 2008. 66-75.
  • 8Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency- tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1597-1604.
  • 9Hou X, Zhang L. Saliency detection: a spectral residual approach. In: Proceedings of the IEEE International Con- ference on Computer Vision and Pattern Recognition. Min- neapolis, USA: IEEE, 2007. 1-8.
  • 10Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. In: Proceedings of the IEEE International Con-ference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2376-2383.

共引文献33

同被引文献21

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部