摘要
在基于3-5阶非线性的Ginzburg—Landau方程的二维耗散系统中,引入反波导型结构的V型折射率调制,研究发现耗散光孤子一些奇特的非线性动力学现象:合适的折射率调制,耗散孤子会连续不断地向两边分裂出同样的耗散孤子,并且分裂的频率随着调制强度的增大而加快;折射率调制比较较弱时,耗散孤子被拉伸成椭圆形;而太强的调制强度会导致耗散孤子崩溃。系统分析了耗散系统中粘滞系数,以及增益和损耗系数对这些非线性动力学现象的影响,发现必须要足够的能量增益才能维持中心孤子进行连续分裂。
The novel nonlinear dynamics of of antiwaveguiding structures are reported dissipative optical solitons supported based on the two dimensional (2D) by introducing a V-shaped potential complex Ginzburg-Landau ( CGL ) equation with cubic-quintic nonlinearity. If the potentials are strong enough, they give rise to continuous splitting of expanding solitons from a cental soliton. The rate of splitting increases with the growth of potential intensity. For a weak potential, the stretch of the cental soliton into ellipse shape is observed instead. For a too strong potential, the central soliton dissipates. In addition, the influence of effective diffusion, gain and loss coefficient on the dynamic regimes is studied. Sufficient energy gain is necessary to maintain continuous splitting of the center soliton.
出处
《光学学报》
EI
CAS
CSCD
北大核心
2014年第13期371-374,共4页
Acta Optica Sinica
基金
基金项目:国家自然科学基金(61205119,11104128)、江西省自然科学基金(20132BAB212001)、江西省教育厅自然科学基金(GJJ13485)