期刊文献+

基于3-5阶非线性Ginzburg-Landau方程的耗散光孤子“连续分裂”

Continuous Splitting of Dissipative Optical Solitons Based on Complex Ginzburg-Landau Equation with Cubic-Quintic Nonlinearity
原文传递
导出
摘要 在基于3-5阶非线性的Ginzburg—Landau方程的二维耗散系统中,引入反波导型结构的V型折射率调制,研究发现耗散光孤子一些奇特的非线性动力学现象:合适的折射率调制,耗散孤子会连续不断地向两边分裂出同样的耗散孤子,并且分裂的频率随着调制强度的增大而加快;折射率调制比较较弱时,耗散孤子被拉伸成椭圆形;而太强的调制强度会导致耗散孤子崩溃。系统分析了耗散系统中粘滞系数,以及增益和损耗系数对这些非线性动力学现象的影响,发现必须要足够的能量增益才能维持中心孤子进行连续分裂。 The novel nonlinear dynamics of of antiwaveguiding structures are reported dissipative optical solitons supported based on the two dimensional (2D) by introducing a V-shaped potential complex Ginzburg-Landau ( CGL ) equation with cubic-quintic nonlinearity. If the potentials are strong enough, they give rise to continuous splitting of expanding solitons from a cental soliton. The rate of splitting increases with the growth of potential intensity. For a weak potential, the stretch of the cental soliton into ellipse shape is observed instead. For a too strong potential, the central soliton dissipates. In addition, the influence of effective diffusion, gain and loss coefficient on the dynamic regimes is studied. Sufficient energy gain is necessary to maintain continuous splitting of the center soliton.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第13期371-374,共4页 Acta Optica Sinica
基金 基金项目:国家自然科学基金(61205119,11104128)、江西省自然科学基金(20132BAB212001)、江西省教育厅自然科学基金(GJJ13485)
关键词 非线性光学 耗散光孤子 Ginzburg—Landau方程 非线性动力学 nonlinear optics dissipative optical solitons Ginzburg-Landau equation Nonlinear dynamics
  • 相关文献

参考文献25

  • 1I S Aranson, L Kramer. The world of the complex Ginzburg-Landau equation [J]. Rev Mod Phys, 2002, 74(1): 99-143.
  • 2Nail Akhmediev, Adrian Ankiewicz. Dissipative Solitons [M]. Berlin, Heidelberg: Springer-Verlag, 2005.
  • 3B A Malomed. Complex Ginzburg-Landau equation [J]. Encyclopedia of Nonlinear Science, 2005. 157-160.
  • 4V I Petviashvili, A M Sergeev. Spiral solitons in active media with an excitation threshold [C]. Akademia Nauk SSSR, 1984, 276: 1380-1384.
  • 5N N Rosanov. Spatial Hysteresis and Optical Patterns [M]. Berlin: Springer, 2002.
  • 6P Mandel, M Tlidi. Transverse dynamics in cavity nonlinear optics [J]. J Opt B: Quantum Semiclassical Opt, 2004, 6(9): R60-R75.
  • 7N N Rosanov, S V Fedorov, A N Shatsev, et al.. Two-dimensional laser soliton complexes with weak, strong, and mixed coupling [J]. Appl Phys B: Lasers Opt, 2005, 81(7): 937-943.
  • 8C O Weiss, Larionova Ye. Pattern formation in optical resonators [J]. Reports on Progress in Physics, 2007, 70(2): 255.
  • 9A Ankiewicz, N Devine, N Akhmediev, et al.. Continuously self-focusing and continuously self-defocusing two-dimensional beams in dissipative media [J]. Phys Rev A, 2008, 77(3): 033840.
  • 10L-C Crasovan, B A Malomed, D Mihalache, et al.. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J]. Phys Rev E, 2000, 63(1): 016605.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部