期刊文献+

强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测 被引量:6

Fault prediction with combination of strong tracking square-root cubature Kalman filter and autoregressive model
下载PDF
导出
摘要 为了解决非线性系统中不可测量参数的预测问题,提出一种带有次优渐消因子的强跟踪平方根容积卡尔曼滤波(STSCKF)和自回归(AR)模型相结合的故障预测方法.利用AR模型时间序列预测法预测未来时刻的测量值,将预测的测量值作为STSCKF的测量变量,从而将预测问题转化为滤波估计问题.STSCKF通过在预测误差方差阵的均方根中引入渐消因子调节滤波过程中的增益矩阵,克服了故障参数变化函数未知情况下普通SCKF跟踪故障参数缓慢甚至失效的局限性,使得STSCKF能较好地预测故障参数的发展趋势.连续搅拌反应釜(CSTR)仿真结果表明,STSCKF的预测精度高于普通SCKF和强跟踪无迹卡尔曼滤波(STUKF),验证了方法的有效性. To deal with the problem of prognosis of unmeasured parameters in nonlinear systems,we propose a fault prediction algorithm which is a combination of the strong tracking square-root cubature Kalman filter (STSCKF) with suboptimal fading factor and the autoregressive (AR) model.Future time values of measurement variables are forecasted by using the AR model time series prediction method; and then,the predicted values are used as STSCKF measurement variables.Thus,the prognostic problem is transformed into a filter estimation issue.The fading factor is introduced into the square root of the STSCKF prediction error covariance for adjusting the gain matrix in the filter process.As aresult,STSCKF eliminates the disadvantage of slow tracking or even unable tracking of fault parameters in conventional SCKF when the time-varying functions of fault parameters are unknown,improving the capability for forecasting the varying trend of fault parameters.Simulation results on a continuous stirred tank reactor (CSTR) show that the predicting accuracy of STSCKF is higher than that of the conventional SCKF or the strong tracking unscented Kalman filter (STUKF),demonstrating the superiority of the performance capability of the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第8期1047-1052,共6页 Control Theory & Applications
基金 总装院校科技创新工程项目
关键词 强跟踪滤波 非线性滤波 状态和参数联合估计 平方根容积卡尔曼滤波(SCKF) 故障预测 strong tracking filter nonlinear filters state and parameter joint estimation square-root cubature Kalman filter (SCKF) fault prediction
  • 相关文献

参考文献19

  • 1周东华 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2002..
  • 2BENKOUIDER A M,KESSAS R,YAHIAOUI A,et al.A hybrid approach to faults detection and diagnosis in batch and semi-batch reactors by using EKF and neural network classifier[J].Journal of Loss Prevention in the Process Industries,2012,25(4):694-702.
  • 3BENKOUIDER A M,BUVAT J C,COSMAO J M,et al.Fault detection in semi-batch reactor using the EKF and statistical method[J].Journal of Loss Prevention in the Process Industries,2009,22(2):153-161.
  • 4WEN C B,LIANG Y.A new fault detection method of induction motor[J].Lecture Notesin Computer Science,2010,6320(1):1-8.
  • 5KARAMI F,POSHTAN J,POSHTAN M.Detection of broken rotor bars in induction motors using nonlinear Kalman filters[J].ISA Transactions,2010,49(2):189-195.
  • 6杨小军,潘泉,张洪才.基于Monte Carlo方法的自适应多模型诊断[J].控制理论与应用,2005,22(5):723-727. 被引量:4
  • 7ALROWAIE F,GOPALUNI R B,KWOK K E.Fault detection and isolation in stochastic non-linear state-space models using particle filters[J].Control Engineering Practice,2012,20(10):1016-1032.
  • 8谭红力,黄新生,岳冬雪.捷联惯导大失准角误差模型在快速传递对准中的应用[J].国防科技大学学报,2008,30(6):19-23. 被引量:10
  • 9ARASARATNAM I,HAYKIN S.Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 10张鑫春,郭承军.均方根嵌入式容积卡尔曼滤波[J].控制理论与应用,2013,30(9):1116-1121. 被引量:16

二级参考文献49

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2YanweiWANG,YingZHENG.Kalman filter based fault diagnosis of networked control system with white noise[J].控制理论与应用(英文版),2005,3(1):55-59. 被引量:5
  • 3王建林,于涛,金翠云.On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine[J].Chinese Journal of Chemical Engineering,2006,14(3):383-388. 被引量:15
  • 4Kain J E, Cloutier J R. Rapid Transfer Alignment for Tactical Weapon Applications[ C]//Proceedings of the AIAA Guidance, Navigation and Control Conference, 1989: 1290-1300.
  • 5Shortelle K J, Graham W R, Raboum C. F-16 Hight Tests of a Rapid Transfer Alignment Procedture[C]//Position Location and Navigation Symposium, 1998:379 - 386.
  • 6Wendel J, Metzger J, Trommer G F. Rapid Transfer Alignment in the Presence of Time Correlated Measurement and System Noise[ C ]// AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004: 1 - 12.
  • 7Scherzinger B M. Inertial Navigator Error Models for Large Heading Uncertainty[ C]//PLANS'96, IEEE, 1996: 477- 484.
  • 8Kong X Y, Nebot E M, D-Whyte H. Development of a Nonlinear Psi-angle Model for large Misaligament Errors and Its Application in INS Alignment and Calibration[C]//Proceedings of the 1999 IEEE Int. conf. on Robotics & Automation, Detroit, Michigan, 1999: 1430- 1435.
  • 9Kim K, Park C G. In-flight Alignment Algorithm Based on Non-symmetric Unscented Transformation[C]// SICE-ICASE International Joint Conference 2006. Bexeo, Busan, Korea, 2006:4916-4920.
  • 10Shin E H, E-Sheimy N. An Unscented Kahnan Filter for In-motion Alignment of Low-cest IMUs[ C ]// IEEE, PLANS, 2004:273 - 279.

共引文献249

同被引文献68

  • 1苏小萍.CFRP层板的疲劳损伤研究方法[J].纤维复合材料,2004,21(3):60-61. 被引量:4
  • 2施招云,周百令.时变AR模型正交最小二乘估计法及其工程应用[J].应用科学学报,1995,13(4):457-460. 被引量:2
  • 3HENDRIK M O, THOMAS J. Actuator fault detection and isolation: an optimised parity space approach [J]. Control Engineering Prac-tice, 2014, 26(5): 222 - 232.
  • 4MAYBECK P S. Multiple model adaptive algorithms for detect- ing and compensating sensor and actuator/surface failures in aircraft flight control systems [J]. International Journal of Robust and Non- linear Control, 1999, 9(14): 1051 - 1070.
  • 5DUCARD G, GEERING H P. Efficient nonlinear actuator fault detec- tion and isolation system for unmanned aerial vehicles [J]. Journal of Guidance, Control and Dynamics, 2008, 31 (1): 225 - 237.
  • 6DUCARD G, GEERING H R Airspeed control for unmanned aerial vehicles: a nonlinear dynamic inversion approach [C] //The 16th Mediterranean Conference on Control and Automation. Ajaccio: IEEE, 2008:676 - 681.
  • 7HSIAO T, WENG M. A hierarchical multiple-model approach for detection and is olation of robotic actuator faults [J]. Robotics and Autonomous Systems, 2012, 60(2): 154 - 166.
  • 8JAECHAN L. CDKF approach for estimating a static parameter of carrier frequency offset based on nonlinear measurement equations in OFDM systems [J]. Nonlinear Dynamics, 2014, 78(1): 703 -711.
  • 9ZHANG L, YANG H, LU H, et al. Cubature Kalman filtering for rela- tive spacecraft attitude and position estimation [J]. Acta Astronautica, 2014, 105(1): 254- 264.
  • 10WANG X, LIANG Y, PAN Q, et al. Design and implementation of Gaussian filter for nonlinear system with randomly delayed measure- ments and correlated noises [J]. Applied Mathematics and Computa- tion, 2014, 232(1): 1011 - 1024.

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部