期刊文献+

基于时频稀疏性分析法的低信噪比微震事件识别与恢复 被引量:15

Automatic event detection and event recovery in low SNR microseismic signals based on time-frequency sparseness
下载PDF
导出
摘要 微震监测是直观评价压裂过程和压裂效果的有效手段.微震事件识别是微震监测的首要步骤.然而对于低信噪比微震监测数据,常规识别方法很难取得满意效果.基于微震事件在时频域中的稀疏性,本文提出利用Renyi熵值表示微震监测数据的时频稀疏程度,并以时频距离为约束条件,建立以低熵值的道数为判别阈值的目标函数.本文方法能在识别出微震事件的同时,恢复出较为清晰的微震事件.通过数值计算和对实际监测数据的测试,表明该方法对低信噪比的微震监测数据有较好的处理效果. Microseismic monitoring is an effective tool for evaluating the fracturing process and its final results. Event detection is the first step of this monitoring. However, for low SNR microseismic monitoring records, it is difficult to obtain satisfactory results using conventional detection methods. According to time-frequency sparsness of microseismic events, the Renyi entropy method is used to measure sparseness of microseismic monitor records. A target function of event detection is created which takes the number of low entropy value traces as thresholding under time-frequency constraint conditions. This method can detect microseismic events and restore clearer microseismic events simultaneously. Tests on synthesis data and real records show that this method has a good performance in processing low-SNR microseismic records.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第8期2656-2665,共10页 Chinese Journal of Geophysics
基金 国家自然基金(41230317和41274112)项目资助
关键词 微震事件 低信噪比 时频稀疏 事件识别 事件恢复 Microseismie event Low signal-to-noise ratio Time-frequency sparseness Event detection Event recovery
  • 相关文献

参考文献3

二级参考文献23

  • 1汪富泉,李后强.小波理论与分形[J].物理,1994,23(9):539-543. 被引量:31
  • 2高静怀,汪文秉,朱光明,彭玉华,王玉贵.地震资料处理中小波函数的选取研究[J].地球物理学报,1996,39(3):392-400. 被引量:172
  • 3王继,陈九辉,刘启元,李顺成,郭飚.流动地震台阵观测初至震相的自动检测[J].地震学报,2006,28(1):42-51. 被引量:43
  • 4[1]Stockwell R G, mansinha L, lowe R P. Localization of the complex spectrum: the S transform. IEEE Trans. on Signal Processing,1996,17:998 ~ 1001
  • 5[3]C Robert Pinnegar, Lalu Mansinha. The S-transform with windows of arbitrary and varying shape.Geophysics, 2003,68( 1 ): 381 ~ 385
  • 6[5]Ta-Hsin Li, Hee-Seok Oh. Wavelet spectrum and its characterization property for random process. IEEE trans. on information theory,2002,48( 11 ): 2922 ~ 2937
  • 7[6]Lunji Qiu, Meng Hwa Er. Wavlet spectrogram of noisy signals. INT.J. Electronics, 1995,79(5) :665 ~ 677
  • 8[7]S Mallat. A Wavelet Tour of Signal Processing. New York: Academic Press, 1998
  • 9[8]Christopher T, Gilbert P Compo. A practical guide to wavelet analysis. Bulletin of the America Meteorological Society, 1998,79( 1):61 ~78
  • 10[9]Gilman D L, F J Fuglister , J M Mitchell Jr . On the power spectrum of red noise. J. Atoms. Sci., 1963, 20:182 ~ 184

共引文献399

同被引文献196

引证文献15

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部