期刊文献+

云环境下基于本体的用户行为分析引擎研究

Research of analysis engine for massive user behavior based on ontology under cloud computing environment
下载PDF
导出
摘要 针对当前大型互联网站提升用户体验的需求,本研究创造性地提出基于本体的用户行为分析引擎的思想,它通过上下文感知技术,实时获取用户访问页面时的上下文信息(以下也称为动态行为),基于本体对用户行为建模,建立基于规则的上下文推理算法,对监测到的动态用户行为进行实时推理,及时反馈结果信息给用户。实验表明:本研究理论上独辟蹊径,设计实现上结合了云存储技术,能够一定程度改善用户体验效果。 Pointing to the demand of large scale internet websites want to improve user experience, this research originally proposes a novel concept of analysis engine based on ontology for massive user behavior that firstly it a- dopts context-aware technology to obtain contextual information real-timely while users access the page, secondly constructs a modeling ontology for user behavior, finally a contextual rule-based inference algorithm is exploited and a dynamic detection of user behavior is undertaken. The system can induce result real-timely to dynamic monitoring information of user behavior. Experiment result shows that the research has novel theory design and implementation based on clouding storage technology, and can certainly improve the effectiveness of user experience.
出处 《南昌大学学报(工科版)》 CAS 2014年第3期271-277,共7页 Journal of Nanchang University(Engineering & Technology)
基金 教育部科技发展研究中心资助项目(20111140004)
关键词 用户行为 分析引擎 本体 user behavior analysis engine : ontology
  • 相关文献

参考文献12

  • 1CHEN Y, YU Y ,ZHANG W,et al. Analyzing user behav- ior history for constructing user profile [ J ]. Conference publications, IEEE ,2008,12 ( 1 ) :343 - 348.
  • 2ULLAH I,et al. A Survey and synthesis of user behavior measurements in ]r2P streaming systems[ J]. Communica- tions Surveys & Tutorials,IEEE,2012,7( 1 ) :734 -749.
  • 3岑荣伟,刘奕群,张敏,茹立云,马少平.基于日志挖掘的搜索引擎用户行为分析[J].中文信息学报,2010,24(3):49-54. 被引量:32
  • 4王振宇,郭力.基于Hadoop的搜索引擎用户行为分析[J].计算机工程与科学,2011,33(4):115-120. 被引量:21
  • 5陶彩霞,谢晓军,陈康,郭利荣,刘春.基于云计算的移动互联网大数据用户行为分析引擎设计[J].电信科学,2013,29(3):27-31. 被引量:33
  • 6JOOHEE K,CHANKYOU H,ELINKYOUNG P,et al. A- nalysis of IPTV user behaviors with map reduce[ J ]. Inter- national Conference Oil Advanced Communication Tech- nolot, Feb, 2012,6 ( 1 ) : 19 - 22.
  • 7BAI X L,CHEN F. The prediction of well user's behavior based on well usage mining[ J ]. 2010 ETP/IITA Confer- ence on Telecommunication and Information (TEIN 2010) ,2010,10( 1 ) :32 -35.
  • 8SONGKYOO K. Enhanced user experience design based on user behavior data by using theory of inventive problem solving[ J ]. In Industrial Engineering and Engineering Management (IEEM),2010 IEEE International Confer- ence on ,2010,1 ( 1 ) : 16 - 23.
  • 9LIAO W H,CHUEH C P. Analysis and lnteltretation of e- Reader User Logs:A Case Study of High School Students" User Behavio [ J ]. In Advanced Learning Technologies (ICA1,T) ,2011 1 lth IEEE International Conference on, 2011,11 (1) :106 - 112.
  • 10LIT M, HOU W J, PAN H. Put context-aware in Virtual Assembly:a sludy of ontology-based architecture and an arithmetic [ J ]. In Pervasive Computing ( JCPC ) 2009 Joint Conferences on, 2009,24 ( 3 ) : 316 - 322.

二级参考文献31

  • 1余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 2CNNIC (China Internet Network Information Center).The 25st report in development of Internet in China[R].http://www.cnnic.net.cn/uploadfiles/pdf/2010/1/15/101600.pdf.2010.
  • 3Cockburn,A.and Jones,S.Which way now? Analysing and easing inadequacies in WWW navigation[J].International Journal of Human-Computer Studies,1996,45,105-129.
  • 4Tauscher,L.,& Greenberg,S.How people revisitweb pages:Empirical findings and implications for the design of history systems[J].International Journal of Human-Computer Studies,1997,47,97-137.
  • 5Craig Silverstein,Monika Henzinger,Hannes Marais,et al.Analysis of a very large Web search engine query log[C]//SIGIR Forum,1998,33 (1):6-12.
  • 6Agichtein E,Brill E,Dumais S.Improving web search ranking by incorporating user behavior information[C]//SIGIR06,New York,NY,USA,2006:19-26.
  • 7Dou Z,Song R,Yuan X,Wen J.Are click-through data adequate for learning web search rankings?[C]//Proceeding of the CIKM '08.ACM,New York,NY,2008:73-8.
  • 8Danny Sullivan,Search Engine Sizes[R].In search engine watch website,http://searchenginewatch.com/reports/article,php/2156481.
  • 9Joachims T,Granka L,Pan B,Hembrooke H,Gay G.Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the SIGIR'05.ACM,New York,NY,2005,154-161.
  • 10Downey,D.,Dumais,S.,Liebling,D.,and Horvitz,E.2008.Understanding the relationship between searchers' queries and information goals[C]//Proceeding of the CIKM ' 08.ACM,New York,NY,2008:449-458.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部