期刊文献+

敏感依赖极小系统的复杂性

Complexity of sensitive dependence minimal dynamical systems
下载PDF
导出
摘要 引进了一类新系统,即敏感依赖极小系统。一个紧致系统称为是敏感依赖极小的是指若该系统中存在子系统是敏感依赖的,则该子系统就是原系统。对于敏感依赖极小系统(X,f),如果BD+(f)-A(f)≠,本文得到f是拓扑传递的,f有满侧度中心的,f是Takens-Ruelle混沌。最后,还证明了敏感依赖极小性质是在拓扑共轭映射保持不变的性质。 As the sensitive dependence minimal system, a new kind of system was firstly introduced in this pa- per. A compact system was called to be sensitive dependence minimal if there was a subsystem. This subsystem was in accord with the original system. For the sensitive dependence minimal system (X,f) with BD+(f)-A(f)≠φ,f was topologically transitive ,f has a full measure center and f is chaotic in the sense of Takens-Ruelle. It was shown that the sensitive dependence minimal property was invariant under the topologically conjugate mapping.
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2014年第3期293-297,共5页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(11261039) 江西省自然科学基金项目(20132BAB201009)
关键词 敏感依赖极小 测度中心 强遍历 拓扑传递 sensitive dependence minimal system strongly ergodic measure center topologically conjugate
  • 相关文献

参考文献7

二级参考文献12

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部