摘要
在实赋范线性空间中考虑带包含约束的集值优化问题(P)。给出了集值优化问题局部严极小元概念,在方向度量正则假设下,利用扩张锥及扩张锥内部的性质借助二阶下导数给出了(P)取得局部严极小元的必要条件。
Set-valued optimization with inclusion constraint in real normed linear spaces was considered. The concept of locally strict minimizer for set-valued optimization was introduced. Under the hypothesis of directional metric regular dilating , a second-order necessary optimality cone and the properties of interior dilating condition for locally strict minimizer was established by using the cone with the help of second-order lower derivative.
出处
《南昌大学学报(工科版)》
CAS
2014年第3期303-306,共4页
Journal of Nanchang University(Engineering & Technology)
基金
国家自然科学基金资助项目(11461044)
江西省自然科学基金资助项目(20122BAB201003)
江西省教育厅科技资助项目(GJJ12010)
关键词
局部严极小元
二阶导数
集值优化
locally strict minimizer
second-order derivative
set-valued optimization