期刊文献+

基于高斯过程回归的工程结构失效概率快速估计方法

Fast estimation of failure probability for engineering structure using Gaussian Process Regression
原文传递
导出
摘要 高斯过程机器学习是基于严格的统计学习理论而新发展的方法,该方法在求解小样本、高维数的非线性问题上具有一定的适应性.针对采用直接蒙特卡洛方法进行功能函数计算代价较高的结构可靠度分析时计算效率过低的瓶颈问题,提出了一种基于高斯过程回归模型的直接蒙特卡洛模拟方法.该方法利用有限元等数值方法构造少量的学习样本,通过学习后的高斯过程回归模型重构隐式功能函数,直接建立随机变量与功能函数值的映射关系,进而结合直接蒙特卡洛方法推求结构的失效概率与可靠指标.算例研究表明,该方法简单易行,与传统蒙特卡洛模拟法相比较,计算效率明显较高,且易于与各种工程结构分析程序或商业计算软件相结合. Gaussian Process (GP) is a newly developed machine learning method based on the strict statisti- cal learning theory. GP is capable of solving the highly nonlinear problem with small samples and high dimensions. Aiming to the bottleneck problem of the direct Monte Carlo method, which has the very low computational efficiency for structural reliability analysis with high calculation cost of performance function, a new method named Gaussian Process Regression based on Monte Carlo Simulation (GPR-based MCS) method was proposed. The small amount of learning samples were built by numerical methods such as finite element analysis in the method. The implicit performance function was approximated and recon- structed by GP regression model, which the mapping of random variables and function values was directly established. Then, Monte Carlo method was applied to get the failure probability and reliability index of the structure. Compared to Monte Carlo method, the proposed method has high efficiency and can directly combine with existing engineering structural software without modification.
出处 《空间结构》 CSCD 北大核心 2014年第3期82-87,共6页 Spatial Structures
基金 国家自然科学基金项目(51369007) 广西重点实验室系统性研究项目(2012ZDX10)
关键词 结构可靠度 失效概率 蒙特卡洛法 高斯过程 有限元法 structural reliability failure probability Monte Carlo method Gaussian Process finite element method
  • 相关文献

参考文献9

  • 1KIM S, NA S. Response surface method using vector projected sampling points[-J]. Structural Safety, 1997, 19 : 3-19.
  • 2DENG J, GU D S, LI X B, et al. Structural reliability analysis for implicit performance function using artificialneural network[J]. Structural Safety, 2005, 27 (1) : 25-48.
  • 3DENG J. Structural reliability analysis for implicit per- formance function using radial basis function network [J]. International Journal of Solids and Structures, 2006, 43(11-12): 3255-3291.
  • 4张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179. 被引量:45
  • 5李洪双,吕震宙.支持向量回归机在结构可靠性分析中的应用[J].航空学报,2007,28(1):94-99. 被引量:12
  • 6RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Massachusetts: MIT Press, 2006.
  • 7SEEGER M. Gaussian processes for machine learning [J-]. International Journal of Neural System, 2004, 14 (2) : 69-106.
  • 8GIROLAMI M, ROGERS S. Variational Bayesian mul- tinomial probit regression with Gaussian process priors [-J]. Neural Computation,2006,18(8) : 1790-1817.
  • 9SU G S,YAN L B,SONG Y C. Gaussian process for non-linear displacement time series prediction of land- slide[J]. Journal of China University of Geosciences, 2007,18: 219-212.

二级参考文献24

  • 1陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. 被引量:182
  • 2MATHERTON.Principles of geo-statistics[J].Economic Geology,1963,58:1246-1266.
  • 3GIUNTA A A,WATSON L T.A comparison of approximation modeling techniques:polynomial vs.Interpolating models[R].AIAA-98-4758.
  • 4SIMPSON T W.Comparison of response surface and kriging models in the multidisciplinary design of an aerospike nozzle[R].NASA/CR-1998-206935,ICASE Report No.98-16.
  • 5LUCIFREDI A,MAZZIERI C,ROSSI M.Applica-tion of multi-regressive linear models,Dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems[J].Mechanical Systems and Signal Processing,2000,14(3):471-494.
  • 6COSTA J P,PRONZATO L,THIERRY E.A com-parison between kriging and radial basis function networks for nonlinear prediction[A].Dans Proc.NSIP'99[C].Antalya,June 1999.
  • 7WELCH W J,BUCK R J,SACKS J.Predicting and computer experiments[J].Technometrics,1992,34(1):15-25.
  • 8WELCH W J,MITCHELL T J,[KG*8]WYNN H P.[KG*8]De-sign and analysis of computer experiments[J].Statistics Science,1989,4(4):409-435.
  • 9KOEHLER J R,OWEN A B.Computer Experim-ents[A].Handbook of Statistics[M].Elsevier Science.New York,1996:261-308.
  • 10Rackwitz R.Reliability analysis a review and some persp-ectives[J].Structural Safety,2001,23(4):365-395.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部