期刊文献+

基于二部图投影的微博事件关联分析方法研究 被引量:4

Research on Microblogging Event Correlation Analysis Method based on Bipartite Graph Projection
下载PDF
导出
摘要 文章针对微博事件相对于传统事件在传播过程中的新特征,提出了利用图论中二部图的理论来获取微博事件间的关联关系的新方法。文中给出了将微博事件和微博用户的关系转换为二部图网络的方法,并根据微博用户在微博事件中的角色特征,给出了微博用户的综合权重,由此来构造"微博事件——微博用户"加权二部图。通过对比多种二部图投影算法,提出了一种基于加权的一维投影算法,在保留二部图结构信息的基础上得出了微博事件间相互关联和影响的定量表示。最后通过实验验证了文章算法的合理性和正确性。 In this paper, we introduce a new method of using the theory of bipartite graph to analysis the correlation of microblogging event by comparing the new features in the process of transmission between microblogging event and traditional event. We give a method on how to convert the relationship between microblogging event and microblogging users to bipartite graph. According to the role of microblogging users in microblogging event, users’ general weight is given to construct the weighted bipartite graph of microblogging event-microblogging users. By comparing a variety of bipartite graph projection algorithm, this paper proposes a one-mode weighted projection algorithm, and comes to a quantitative representation of the correlation and inlfuences without losing the information of bipartite graph. Finally, a systematic experiment is conducted to verify the rationality and correctness of the proposed algorithm.
出处 《信息网络安全》 2014年第9期44-49,共6页 Netinfo Security
基金 国家高科技研究发展计划(863计划)[2012AA013002] 国家重点基础研究发展计划(973计划)[2013CB329601 2013CB329602]
关键词 微博事件 关联分析 加权二部图 二部图投影 microblogging event correlation analysis weighted bipartite graph bipartite graph projection
  • 相关文献

参考文献13

  • 1人民网.2013年中国互联网舆情分析报告[EB/OL].http://yuqing.people.eonl.cn/n/2014/0318/c364391-24662668.html.2014-03-18.
  • 2钱颖,张楠,赵来军,钟永光.微博舆情传播规律研究[J].情报学报,2012,31(12):1299-1304. 被引量:55
  • 3M. E. J. Newman, Scientific collaboration networks. I. Networkconstruction and fundamental results[R]. Physical review E 64,2001.
  • 4Aristides Gionis, Heikki Mannila,TaneliMielikainen, Panayiotis Tsaparas.Assessing data mining results via swap randomization [J]. Transactions onKnowledge Discovery from Data (TKDD). 2007, 1(03):1 一32.
  • 5Ravasz E, Somera A, Mongru D, Oltvai Z, Barabasi AL. Hierarchicalorganization of modularity in metabolic networks [J]. Science, 2002,30:1551-1555.
  • 6Goh KI, Cusick ME, Valle D, Childs B, Vidal M. Barabbas AL (2007)The human disease network [J]. ProcNatl AcadSci 104:8685—8690.
  • 7K. A. Zweig, M. Kaufmann. A systematic approach to the one—modeprojection of bipartite graphsQ]. Social Network Analysis and Mining,2011,1(03):187-218.
  • 8荣莉莉,蔡莹莹,王铎.基于共现分析的我国突发事件关联研究[J].系统工程,2011,29(6):1-7. 被引量:25
  • 9J. J. Ramasco, S. A. Morris. Social inertia in collaborationnetworksQ].Physical review. E, Statistical, nonlinear, and soft matter physics, 2006,73.
  • 10M. Li, J. Wu, D. Wang, T. Zhou, Z. Di, Y. Fan. Evolving modelofweighted networks inspired by scientific colIaborationnetworksQ]. PhysicaA: Statistical Mechanics and its Applications,2007,375(01):355—364.

二级参考文献44

  • 1刘文方,肖盛燮,隋严春,周菊芳,高海伟.自然灾害链及其断链减灾模式分析[J].岩石力学与工程学报,2006,25(z1):2675-2681. 被引量:50
  • 2陈兴民.自然灾害链式特征探论[J].西南师范大学学报(哲学社会科学版),1998,30(2):122-125. 被引量:5
  • 3李英奎,倪晋仁,李秀霞,薛安,韩鹏.泥沙灾害与泥沙灾害链的分类分级[J].自然灾害学报,2005,14(1):15-24. 被引量:12
  • 4谢彩霞,梁立明,王文辉.我国纳米科技论文关键词共现分析[J].情报杂志,2005,24(3):69-73. 被引量:82
  • 5门可佩.重大地震灾害链的时空有序性及其预测研究[J].地球物理学进展,2007,22(2):645-651. 被引量:25
  • 6Gedimiinas Adomavicus,Alexander Tuzhilin.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,June 2005,17(6):734-749.
  • 7Linden G,Smith B,York J.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.
  • 8Miller B N,Albert I,Lam S K,et al.MovieLens unplugged:experiences with an occasionally connected recommender system[C].Proceeding of Int'l Conf.Intelligent User Interfaces,Miami,USA:2003,263-266.
  • 9Resnick P,Iacovou N,Suchak M,et al.Grouplens:an open architecture for collaborative filtering of netnews[C].Proceeding of the CSCW Conference,Chapel Hill,NC:1994,175-186.
  • 10Kim J W,Lee B H,Shaw M J,et al.Application of decision-tree induction techniques to personalized advertisements on Internet storefronts[J].International Journal of Electronic Commerce,2001,5(3):45-62.

共引文献96

同被引文献50

  • 1杨波,陈忠,段文奇.复杂网络幂律函数标度指数的估计与检验[J].上海交通大学学报,2007,41(7):1066-1068. 被引量:8
  • 2PELEG D,MOORE A. X-means: Extending K-means with Efficient Estimation of the Number of Clusters [C]//Seventeenth International Conference on Machine Learning.San Francisco:Morgan Kaufmann Publishers, 2000: 89-97.
  • 3DEY D, SOLORIO T, et al. Instance Selection in Text Classification Using the Silhouette Coefficient Measure.[J]. Lecture Notes in Computer Science, 2011 (94):357-369.
  • 4TSVETOVATMAKSIM,KOUZNETSOVALEXANDER.社会网络分析方法与实践[M].北京:机械工业出版社,2013:71-82.
  • 5Jesus R, Schwartz M, Lehmann S.Bipartite networks of Wikipedia's articles and authors: a meso-level ap- proach: Proceedings of the 5th International Sympo- sium on Wikis and Open Collaboration[Z].ACM, 2009.
  • 6Miiller C, Meuthrath B, BaumgraB A.Analyzing Wi- ki-based Networks to Improve Knowledge Processes in Organizations[J].Journal of Universal Computer Science,2008, 14(4): 526-545.
  • 7Liu Z, Liu L.Complex Network Property Analysis of Knowledge Cooperation Networks[C].Chengdu: 2009.
  • 8Stanley Wasserman,Katherine Faust.社会网络分析:方法与应用[Z].北京:中国人民大学出版社,2012.
  • 9维基百科.自由的百科全书[EB/OL].http://zh.wikipedia.org,2015-03-05.
  • 10百度百科学科分类目录[EB/OL].http://baike.baidu.com/view/1538671htm,2015-03-05.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部