期刊文献+

功能化石墨烯负载氯霉素稳定性的研究 被引量:3

Functionalized graphene oxide as a nanocarrier for loading of chloramphenicol
下载PDF
导出
摘要 目的通过利用β-环糊精对氧化石墨烯进行功能化改性,合成GO-β-CD杂化复合材料,探索其作为新型纳米载体负载药物的应用。方法采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、拉曼光谱仪、傅立叶变换红外检测器(FT-IR)等检测方法对GO-β-CD的形貌和结构进行表征。结果利用GO-β-CD体系对氯霉素进行负载,载药量高达115%,氯霉素滴眼液加速实验90d后,测得二醇物含量分别为10.13%(市售处方)和7.28%(改进处方)(≤8.0%,符合药典)。结论通过功能化的石墨烯载体对药物进行负载后,氯霉素的稳定性显著提高,并提高了制剂质量。 Objective In order to explore grapheme oxide (GO) as a new nano carrier-supported drug, β-cyclodextrin was grafted on to grapheme oxide via an esterification process to synthetic GO-β-CD hybrid composite materials. Methods The morphology and structure of the material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared detector (FT-IR) and other detection methods. Results The drug loading ratio was determined to be as high as 115% with using of GO-β-CD system as a nanocarrier for loading of chloramphenicol, which after 90 days of chloramphenicol eye drops accelerated test, and the measured glycol extracts were 10.13% (commercially available prescription) and 7.28% (improved prescription) (≤8.0%, Pharmacopoeia standard). Conclusion The stability ofchloramphenicol by functionalized GO and the quality of the preparation was significantly increased.
出处 《中国抗生素杂志》 CAS CSCD 北大核心 2014年第9期665-668,687,共5页 Chinese Journal of Antibiotics
基金 江西省教育厅2013年科学技术研究项目(No.GJJ13608)
关键词 氧化石墨烯 氯霉素 纳米载体 稳定性 Graphene oxide Chloramphenicol Nanocarriers Stability
  • 相关文献

参考文献13

  • 1Macedo R O, Aragao C F, do Nascimento T G, et al. Application of thermogravimetry in the quality control of chloramphenicol tablets[J]. J Therm Anal Calorim, 1999,56(3):1323-1327.
  • 2Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
  • 3Chae H K, Siberio D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
  • 4Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphite oxide[J]. Nat Chem, 2009, 1(5): 403-408.
  • 5Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide[J]. JAm Chem Soc, 2008, 130(32): 10697-10701.
  • 6孙涛,李建业,郝爱友.环糊精-石墨烯超分子体系[J].有机化学,2012,32(11):2054-2062. 被引量:10
  • 7Xn C H, Wang X B, Wang J C, et al. Synthesis andphotoelectrical properties of 13-cyclodextrin functionalized graphene materials with high bio-recognition capability[J]. Chem Phys Lett, 2010, 498(I-3): 162-167.
  • 8Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.
  • 9Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett, 2008, 8(1): 36-41.
  • 10Girit C O, Meyer J C, Marta R E, et al. Graphene at theedge: stability and dynamics[J]. Science, 2009, 323(5922): 1705-1708.

二级参考文献6

共引文献9

同被引文献20

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部