期刊文献+

基于GO法和RCM的惯性导航系统预测维修平台设计 被引量:3

Design of Predictive Maintenance Platform for INS Based on GO Methodology and RCM
下载PDF
导出
摘要 针对惯性导航系统(INS)结构复杂、难以进行精确的系统可靠性分析和维修优化等问题,提出了一种基于GO法和以可靠性为中心的维修(RCM)的INS预测维修平台设计方法。利用GO法建立INS的可靠性分析模型—GO图,依据部件的寿命分布函数及时间应力采样更新部件的可靠度,实现部件残余寿命及系统可靠度的动态预测和评估。对不满足系统可靠性指标的INS,利用综合评价法权衡部件的贡献度、失效频度、检测度等影响因素,计算出各部件的维修优先度。最后按INS部件失效率恒定、失效率可变及故障部件隔离等不同情况分别进行仿真验证,结果证明所设计的INS预测维修平台是可行的、有效的,评价结果可为维修计划的制定提供参考依据。 A design method of predictive maintenance platform based on GO methodology and reliability- centered maintenance(RCM) is proposed for the complex structure, reliability analysis and optimal maintenance of inertial navigation system (INS). GO methodology is applied to build the INS reliability analyses model--GO chart. In order to realize the dynamic prediction and evaluation of the residual lives of components and the system reliability, the components reliability are updated continuously based on life distribution functions and time stress samples. For the INS that fails to meet the system reliability index, the maintenance priorities of all components are given quantitatively by adopting the comprehensive evalu- ation method to balance the affecting factors of components : contribution to system, failure likelihood and detection difficulty. Finally, some simulations are processed under the situations of constant failure rate, variable failure rate and fault isolation of INS components. The results show that the proposed predictive maintenance platform for INS is feasible and effective, and the predicted results can be used as a reference for making scientific maintenance decisions.
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第9期1443-1450,共8页 Acta Armamentarii
基金 航空科学基金项目(20130863006) 中央高校基本科研业务费专项(DUT12LK21)
关键词 系统评估与可行性分析 惯性导航系统 GO法 RCM 预测性维修 system assessment and feasibility analysis inertial navigation system GO methodology RCM predictive maintenance
  • 相关文献

参考文献14

  • 1Charles E E.可靠性与维修性工程概论[M].北京:清华大学出版社,2010:66-67.
  • 2Jardine A K, Lin D, Banjevic D. A review on machinery diagnos- tics and prognostics implementing condition-based maintenance [ J]. Mechanical Systems and Signal Processing, 2006, 20 ( 7 ) : 1483 - 1510.
  • 3李树广,赵彦峻,徐诚.装备维修备件需求预测与决策方法研究[J].兵工学报,2011,32(7):901-905. 被引量:14
  • 4顾煜炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报,2004,24(6):189-194. 被引量:67
  • 5徐玉国,邱静,刘冠军,吕克洪.基于损伤标尺的电子设备预测维修决策优化[J].航空学报,2012,33(11):2093-2105. 被引量:5
  • 6Compare Michele, Zio Enrico. Risk sensitive particle filtering in support of predictive maintenance [ J ]. Chemical Engineering Transactions, 2013, 33 : 307 - 312.
  • 7Ivan Mustakerov, Daniela Borissova. An intelligent approach to optimal predictive maintenance strategy defining [ C ] //2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications. Albena,Bulgaria: IEEE. 2013.
  • 8William R W. Reliability engineering approach to achieve RCM for mechanical systems-2012[ C ]//2012Annual Reliability and Main- tainability Symposium. Reno, Nevada: Institute of Electrical and Electronics Engineers Inc, 2012.
  • 9Vichare N M, Pecht M G. Prognostics and health management of electronics[ J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29 ( 1 ) : 222 - 229.
  • 10Chun B B. GO methodology: overview manual, EPRI NP-31231 [ R]. Washington, DC, US: Electric Power Research Institute, 1983.

二级参考文献57

共引文献95

同被引文献21

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部