期刊文献+

基于失衡数据挖掘的乳腺癌早期辅助检测方法 被引量:5

Early breast cancer auxiliary detection method based on imbalance data mining
下载PDF
导出
摘要 针对乳腺癌早期X摄片人为难以甄别的问题,提出了一种新的基于失衡数据挖掘的检测方法,为计算机辅助乳腺癌早期诊断提供一套有效的解决方案。首先,提出了基于聚类簇边界采样(CBS)的方法对数据集进行重采样,通过聚类密度阈值和边界密度阈值来更加科学、准确地确定聚类边界指导重采样。其次,引入集成学习思想有效调节数据失衡对SVM分类算法产生的影响。通过在佛罗里达大学的乳腺X摄片图像数据库中进行的对比实验表明该方法与传统方法比较,采用CBS前后的AUC值从0.577提升到0.717,再引入集成学习方法,AUC值提升到0.83。结果表明所提出的方法可以有效地检测出X摄片图像中异常的潜在钙化点,实现辅助医生提高乳腺癌早期诊断的成功率。 Aiming at the difficulty in the recognization of early breast cancer X radiography,this paper proposes a new detection method based on imbalance data mining,which provides an effective solution for computer aided diagnosis of early breast cancer.Firstly,we propose a method of cluster boundary sampling (CBS),which uses the clustering density threshold and boundary density threshold to determine the cluster boundaries,and guide the process of re-sampling more scientifically and accurately.Then,we adopt the ensemble learning to regulate the influence of data imbalance on SVM classification algorithm.Comparison experiments on the digital database for screening mammography (DDSM) from University of Florida show that compared with the tradition method,after adopting CBS method,the value of AUC increases from 0.577 to 0.717 ; and then by introducing ensemble learning method,the value of AUC increases to 0.83.The results show that the proposed method is able to detect the abnormal potential calcification points effectively and assist doctors to improve the success rate of breast cancer early diagnosis.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第9期2045-2052,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61103149) 中国博士后科学基金(2011M500682) 黑龙江省自然科学基金(QC2013C060) 哈尔滨市青年科技创新人才专项(2012RFQXG093)资助项目
关键词 计算机辅助诊断 图像数据挖掘 支持向量机 聚类采样 computer-aided diagnosis image data mining support vector machine (SVM) clustering sampling
  • 相关文献

参考文献19

  • 1BALZER M,BIRK M,DAPP R,et al.3D ultrasound computer tomography for breast cancer diagnosis[C].Real Time Conference (RT),2012 18th IEEE-NPSS,IEEE,2012:1-4.
  • 2BASELGA J,CAMPONE M,PICCART M,et al.Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer[J].New England Journal of Medicine,2012,36(6):520-529.
  • 3STEPHENS P J,TARPEY P S,DAVIES H,et al.The landscape of cancer genes and mutational processes in breast cancer[J].Nature,2012,486 (7403):400-404.
  • 4MOURADC,L(O)PEZ M A G.An evaluation of image descriptors combined with clinical data for breast cancer diagnosis[J].International Journal of Computer Assisted Radiology and Surgery,2013,8(4):561-574.
  • 5ARORA M,TAGRA D.Neuro-fuzzy expert system for breast cancer diagnosis[C].Proceedings of the International Conference on Advances in Computing,Communications and Informatics,ACM,2012:979-985.
  • 6许良凤,林辉,胡敏.基于差分进化算法的多模态医学图像融合[J].电子测量与仪器学报,2013,27(2):110-114. 被引量:26
  • 7BOGONI L,CATHIER P,DUNDAR M,et al.Computer-aided detection (CAD) for CT colonography:A tool to address a growing need[J].2014.
  • 8HORSCH K,PESCE L L,GIGER M L,et al.A scaling transformation for classifier output based on likelihood ra tio:applications to a CAD workstation for diagnosis of breast cancer[J].Medical physics,2012,39 (5):2787-2804.
  • 9文丽丽,罗洪艳,张绍祥,郑小林,谭立文.数字人脑切片图像中小脑组织的连续自动分割[J].仪器仪表学报,2013,34(1):133-139. 被引量:5
  • 10魏颖,于谦,贾同,赵大哲.面向肺癌CAD的CT图像疑似病灶检测算法[J].仪器仪表学报,2009,30(1):1-6. 被引量:9

二级参考文献34

共引文献37

同被引文献34

  • 1钱家鸣,姚方.慢性胰腺炎的治疗方法与疗效的评价[J].临床消化病杂志,2007,19(6):335-336. 被引量:9
  • 2FERLAY J, SHIN H, BRAY F, et al, Cancer incidence and mortality worldwide : IARC cancer base No. 10 [ J 1. International Agency for Research on Cancer, 2012: 29.
  • 3BRAY F, REN J, MASUYER E, et al. Estimates of global cancer prevalence for 27 sites in the adult popula- tion in 2008 [ C ]. International Journal of Cancer, 2013, 132(5) :1133-1145.
  • 4International Agency for Research on Cancer. World hea- lth organization 2014 [ J]. Geneva : WHO, 2014.
  • 5Breast cancer treatment (PDQ). National Cancer Insti- tute ,2014.
  • 6MOUELHI A, SAYADI M, FNAIECH F, et al. Auto- matic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method[J]. Biomedical Signal Processing and Control, 2013,8(5 ) : 421-436.
  • 7GEORGE Y M, BAGOURY B M, ZAYED H H, et al. Automated cell nuclei segmentation for breast fine needle aspiration cytology [ J ]. Signal Processing, 2013, 93 (10) : 2804-2816.
  • 8GEORGE Y M, ZAYED H H, ROUSHDY M I, et al. Re- mote computer-aided breast cancer detection and diagnosis system based on cytological images [ J ]. IEEE Systems Journal, 2014,8(3) :949-964.
  • 9VETA M. Automatic nuclei segmentation in H&E stained breast cancer histopathology images [ J ]. Plos One, 2013,8(7) : e70221.
  • 10FILIPCZUK P, FEVENS T, KRZYZAK A, et al. Com- puter-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies [ J ]. IEEE Transactions on Medical Imaging, 2013, 32 ( 12 ) : 2169-2178.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部