期刊文献+

大肠杆菌甲基转移酶dcm基因的表达对变铅青链霉菌的多效性影响 被引量:2

Pleiotropic effects on Streptomyces lividans growth by Dcm expression
原文传递
导出
摘要 【目的】大肠杆菌的dcm基因编码的DNA甲基转移酶可以特异性地将5′CCWGG3′(W=A/T)序列中第二个胞嘧啶变成5-甲基胞嘧啶。Dcm甲基转移酶发现已有37年了,但其确切的功能不明,本篇主要研究其对变铅青链霉菌的影响。【方法】通过构建克隆、接合转移、异源表达及HPLC、酶切、Southern杂交等方法研究dcm基因的表达对变铅青链霉菌的多效性影响。【结果】首次发现变铅青链霉菌基因组中不含5-甲基胞嘧啶修饰,将dcm基因导入变铅青链霉菌后,接合子菌落比正常菌落小很多,并有放线紫红素产生。【结论】基因组的表观遗传修饰能激活沉默放线紫红素基因簇的表达这一现象,为基因组挖掘隐藏的活性天然产物提供了一条新途径。 [Objective] In Escherichia coli, cytosine DNA methylation occurring at the inner cytosine in the sequence 5′CCWGG3′, is catalyzed by the DNA cytosine methyltransferase(Dcm) protein.Although dcm modification has been studied for nearly 37 years, the biological role for this gene is still unclear. In this study, we focus on the function of dcm in Streptomyces lividans. [Methods] dcm gene was isolated from E. coli and introduced into S. lividans 1326; HPLC-MS, methylation sensitivity assay and Southern blot are used to study the expression of dcm in S. lividans. [Results]The colony of dcm-containing exoconjugant is much smaller than wild type, and the production of actinorhodin in either MS agar plate or R5 liquid media was enhanced by two folds. [Conclusion]Epigenetic modification of the gonome of S. lividans by Dcm can activate the actinordin biosynthesis, providing an alternative way for genomic mining of cryptic bioactive metabolites.
出处 《微生物学通报》 CAS CSCD 北大核心 2014年第9期1925-1931,共7页 Microbiology China
基金 国家自然科学基金项目(No.31170083)
关键词 dcm甲基化 链霉菌 形态分化 放线紫红素 dcm modification Streptomyces Morphological differentiation Actinorhodin activation
  • 相关文献

参考文献17

  • 1Marinus MG. Location of DNA methylation genes on the Escherichia coli K-12 genetic map[J]. Molecular Genetics and Genomics, 1973, 127(1): 47-55.
  • 2Barras F, Marinus MG. The great GATC: DNA methylation in E. coli[J]. Trends in Genetics, 1989, 5(5): 139-143.
  • 3Bhagwat AS, Sohail A, Roberts RJ. Cloning and characterization of the dcm locus of Escherichia coli K- 12[J]. Journal of Bacteriology, 1986, 166(3): 751-755.
  • 4Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine[J]. Proceedings of the National Academy of Sciences, 1986, 83(23): 9070-9074.
  • 5Zhou H, Wang Y, Yu Y, et al. A non-restricting and non-methylating Escherichia coli strain for DNA cloning and high-throughput conjugation to Streptomyces coelicolor[J]. Current Microbiology, 2012, 64(2): 185-190.
  • 6Smokvina T, Mazodier P, Boccard F, et al. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes[J]. Gene, 1990, 94(1 ): 53-59.
  • 7Wilkinson C J, Hughes-Thomas ZA, Martin C J, et al. Increasing the efficiency of heterologous promoters in actinomycetes[J]. Journal of Molecular Microbiology and Biotechnology, 2002, 4(4): 417-426.
  • 8Choi SU, Lee CK, Hwang YI, et al. Cloning and functional analysis by gene disruption of a gene encoding a 7-butyrolactone autoregulator receptor from Kitasatospora setae[J]. Journal of Bacteriology, 2004, 186(11 ): 3423-3430.
  • 9Wang L, Chert S, Xu T, et al. Phosphorothioation of DNA in bacteria by dnd genes[J]. Nature Chemical Biology, 2007, 3(11): 709-710.
  • 10Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter[J]. Nature, 2008, 452(7183): 45-50.

二级参考文献21

  • 1Hopwood DA. Forty years of genetics with Streptomyces: from in vivothrough in vitro to in silico. Microbiology 1999, 145: 2183–2202.
  • 2Flardh K and Buttner MJ. Streptomyces morphogenetics: dissecting differentiationin a filamentous bacterium. Nat Rev Microbiol 2009, 7: 36–49.
  • 3Claessen D, de Jong W, Dijkhuizen L and Wosten HA. Regulation ofStreptomyces development: reach for the sky! Trends Microbiol 2006, 14:313–319.
  • 4Bibb M. 1995 Colworth Prize Lecture. The regulation of antibiotic productionin Streptomyces coelicolor A3(2). Microbiology 1996, 142:1335–1344.
  • 5Wietzorrek A and Bibb M. A novel family of proteins that regulates antibioticproduction in streptomycetes appears to contain an OmpR-likeDNA-binding fold. Mol Microbiol 1997, 25: 1181–1184.
  • 6Ohnishi Y, Yamazaki H, Kato JY, Tomono A and Horinouchi S. AdpA, acentral transcriptional regulator in the A-factor regulatory cascade thatleads to morphological development and secondary metabolism inStreptomyces griseus. Biosci Biotechnol Biochem 2005, 69: 431–439.
  • 7Pope MK, Green BD and Westpheling J. The bld mutants of Streptomycescoelicolor are defective in the regulation of carbon utilization, morphogenesisand cell–cell signalling. Mol Microbiol 1996, 19: 747–756.
  • 8Merrick MJ. A morphological and genetic mapping study of bald colonymutants of Streptomyces coelicolor. J Gen Microbiol 1976, 96: 299–315.
  • 9Champness WC. New loci required for Streptomyces coelicolor morphologicaland physiological differentiation. J Bacteriol 1988, 170:1168–1174.
  • 10McCormick JR, Su EP, Driks A and Losick R. Growth and viability ofStreptomyces coelicolor mutant for the cell division gene ftsZ. MolMicrobiol 1994, 14: 243–254.

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部