期刊文献+

化学链空气分离制氧系统热力学分析(英文)

A thermodynamic analysis of chemical looping air separation for oxygen production
原文传递
导出
摘要 根据Gibbs自由能最小化原理,利用ASPEN PLUS对化学链空气分离制氧系统进行了热力学研究。选用Mn_2O_3/Mn_3O_4为氧载体,讨论了新鲜空气进料量和还原温度对水蒸气用量与O_2产量的影响,并对该系统进行了有效能分析。结果表明,当还原温度为850℃,随着新鲜空气进料量由125 kmol/h增加至200 kmol/h,氧气产量从9.84 kmol/h增加至16.67 kmol/h,同时水蒸气用量随新鲜空气进料量增加而增加,当新鲜空气进料量大于200 kmol/h时,水蒸气用量和O_2产量均不再增加,此时水蒸气用量为8.05 kmol/h,O_2产量为16.67 kmol/h;当空气进料量为200 kmol/h,在水蒸气用量为8 kmol/h时,O_2产量随还原温度升高而增加,当还原温度高于850℃时,O_2产量不再变化:在保证O_2完全脱出的情况下,水蒸气用量随还原温度升高而减少。当空气进料量为200 koml/h、还原温度为850℃,在保证O_2完全脱出的情况下,系统的有效能效率为43.5%。 Based on the Gibbs Free Energy Minimization Principle, the chemical looping air separation for oxygen production system was simulated by ASPEN PLUS and analyzed from the view of thermodynamics. Mn2O3/Mn3O4 was selected as the suitable oxygen carriers. In this work, the effects of fresh air feed rate and the reduction temperature on the steam consumption and O2 production were discussed separately. The exergy efficiency of CLAS was also analyzed. The results showed that the production of O2 was increasing from 9.84 to 16.67 kmol/h with the air feed flow rises from 125 to 200 kmol/h at the reduction temperature of 850 ℃. Relatively, the increasing of fresh air feed flow could lead to an increase in steam mole flow rate. Steam mole flow rate was reduced as reduction temperature rises while the O2 production reached the maximum. And when the value of steam mole flow rate was a certain one as 8 kmol/h, the production of O2 was increased with the reduction temperature. The O2 production was affected less with reduction temperature. When the reduction temperature was over 850℃, and the air feed rate was 200 koml/h, the effective energy efficiency of the system was 43.5%while ensuring complete prolapse of O2.
作者 诸林 张政
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第9期1061-1064,共4页 Computers and Applied Chemistry
关键词 热力学分析 新鲜空气进料量 还原温度 有效能效率 CLAS CLAS thermodynamic analysis feed flow rate of fresh air reduction temperature exergy efficiency
  • 相关文献

参考文献22

  • 1Shah K, Moghtadefi B, Wall T. Selection of suitable oxygen carriers for chemical looping air separation: a thermo-dynamie approach. Energy Fuels, 2012, 26:2038-2045.
  • 2Shah K, Moghtaderi B, Zanganeh J, Wall T. Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel, 2013, 107: 356-370.
  • 3Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol, 2001, 70(2): 115-134.
  • 4Moghtaderi B. Application of chemical looping concept for air separation at high temperatures. Energy Fuels, 2010, 24:190-198.
  • 5Hong J, Chaudhry G, Brisson J G, Field R, Gazzino M, Ghoniem A F. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 2009, 34(9): 1332-1340.
  • 6Jee J G, Kim M B, Lee C H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve. Chemical Engineering Science, 2005, 60(3):869-882.
  • 7Burdyny T, Struchtrup H. Hybrid Membrane/cryogenic separation of oxygenfrom air for use in the oxy-fuel process. Energy, 2010, 35(5): 1884-1897.
  • 8Shah K, Moghtaderi B, Wall T. Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion. Fuel, 2013, 103:932-942.
  • 9Mattisson T, Lyngfelt A, Lcion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenhouse Gas Control, 2009, 3(1):11-19.
  • 10Abad A, Adanez-Rubio I, Gayan P, Garcia-labiano F, de Diego L F, Adancz J. Demonstration of chemical-looping with oxygen tmcoupling(CLOU) process in a 1.5 kWth continuously operation unit using a Cu-based oxygen carrier. Int J Greenhouse Gas Control, 2012, 6:189-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部