期刊文献+

基于最小信息熵损的KLPP算法在化工监控中的应用

Chemical process monitoring using KLPP based Minimum Entropy Loss
原文传递
导出
摘要 针对化工过程的非线性以及过程的动态特征,本文开发出了一种基于最小信息熵损的核局部保留算法(MEL-KLPP)。算法优点:①能够有效提取过程中的信息,建立准确的统计模型②在降维过程中考虑了样本之间的关联信息,所得模型更加符合实际。将算法应用于润滑油重质过程以检验其故障检出能力,结果表明MEL-KLPP算法的误报率和KLPP相近,低于KPCA,故障检出率(81.30%)高于KLPP(3.25%)和KPCA(69.7%)。将过程收集的数据根据工艺知识进行分块建模后,KLPP算法的故障检出率显著提高,MEL-KLPP检出率变化不大,表明KLPP算法对强噪声的复杂数据并不适用,MEL-KLPP算法对数据质量的要求不高,算法鲁棒性好,具有更广阔的应用前景。 A new technique named Kernel Locality Preserving Projection based Minimum Entropy Loss (MET-KLPP) is developed to deal with the complex and nonlinear problem for chemical process monitoring,Kernel function and the minimum entropy loss was introduced to the The traditional methods named Locality Preserving Projection(LPP) at the same time. Comparing with other statistical process monitoring methods, MET-KLPP has two advantages in the process of dimension reduction .First, MET-KLPP method considers both the transition matrix eigenvalue and eigenvector, this can be more effective to reveal the essence of data feature and extract more effective information from the data .Second The relationship between samples are considered, so the model was developed using this method is more conform to the actual process. MET-KLPP was test using industry data from a lubricating replacement process to check its effectiveness,the lubricating including furfural refining process and ketone-benzol dewaxing process, the results are compared with other two methods Kernel Locality Preserving Projection (KLPP) and Kernel Principal Component Analysis (KPCA). Fault alarm rate of them is very similar with KLPP (4.31 %), MEL-KLPP (3.68%) and KPCA (6.40%). The fault detection of MET-KLPP is 81.30%, which is higher than KLPP (3.25%) and KPCA (69.7 %). In order to monitor the process and test the methods better the industry data was divided and modeling separately based on the technology knowledge , the fault detection rate of KLPP increased a lot, with 79.06 % for furfural refining process and 13.01 % for ketone-benzol dewaxing process, while MET-KLPP is almost the same with 81.30%for furfural refining process 6.10%for ketone-benzol dewaxing process, the fault detection rate of KPCA is not change two much but it is more lower than MET-KLPP, this means MET-KLPP have a good robustness and a wide application prospect.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第9期1070-1074,共5页 Computers and Applied Chemistry
基金 国家自然科学基金项目(21176089 21376091) 国家科技支撑计划课题(2012BAK13B02)
关键词 化工过程监控 核局部保留 最小信息熵损 chemical process monitoring Kernel Locality Preserving Projection Minimum Entropy Lose
  • 相关文献

参考文献9

  • 1Alghazzawi A, Lennox B. Monitoring a complex refining process using multivariate statistics. Control Engineering Practice, 2008, 16(3):294-307.
  • 2Faggian A, Facco P, Doplicher F, et al. Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chemical Engineering Research and Design, 2009, 87(3):325-34.
  • 3He X, Cai D, Min W. Statistical and computational analysis of locality preserving projection. Proceedings of the 22nd international conference on Machine learning. Bonn, Germany; ACM.2005:281-8.
  • 4Renyi A. On Measures of Entropy and Information; Proceedings of the Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, Calif., F 1961, University of California Press, 1961.
  • 5周华,李秀喜,钱宇.石油化工过程安全技术研究进展[J].化工进展,2008,27(10):1498-1504. 被引量:17
  • 6孙美红,孙巍,赵劲松,张浩,张佳.多变量统计方法监测化工过程的缓变故障[J].计算机与应用化学,2009,26(10):1228-1232. 被引量:6
  • 7李秀喜,钱宇.化工过程安全运行技术研究进展[C].第十届全国信息技术化工应用年会,中国吉林市,F,2005.
  • 8康德礼,李秀喜.核熵成分分析算法及其在化工过程监控中的应用研究[J].计算机与应用化学,2013,30(8):855-858. 被引量:3
  • 9童楚东,颜学峰.基于PCA与OLPP混合方法的化工过程故障检测[J].计算机与应用化学,2012,29(9):1065-1068. 被引量:4

二级参考文献86

  • 1徐涛,王祁.基于小波变换的多尺度主元分析在传感器故障诊断中的应用[J].测试技术学报,2006,20(5):418-423. 被引量:6
  • 2[3]Venkatasubramanian V,Rengaswamy R,Yin K,et al.A review of process fault detection and diagnosis(Part Ⅰ):Quantitative model-based methods[J].Computers and Chemical Engineering,2003(27):293-311.
  • 3[4]Li X X,Qian Y,Wang J F.Process monitoring based on wavelet packet principal component analysis[J].European Symposium on Computer Aided Process Engineering,2004,13:455-460.
  • 4[5]Frank P M.New developments using AI in fault diagnosis[J].Engineering Application of Artificial Intelligence,1997,10(1):3-14.
  • 5[6]Venkatasubramanian V,Rengaswamy R,Kavuri S N.A review of process fault detection and diagnosis(Part Ⅱ):Qualitative models and search strategies[J].Computers and Chemical Engineering,2003(27):313-326.
  • 6[7]Venkatasubramanian V,Rengaswamy R,Kavuri S N,et al.Areview of process fault detection and diagnosis(Part Ⅲ):Process history based methods[J].Computers and Chemical Engineering,2003(27):327-346.
  • 7[8]Wang X Z,Chen B H,McGreavy C.Application of wavelets and neural networks to diagnostic system development,2,an integrated framework and its application[J].Computer and Chemical Engineering,1999(23):945-954.
  • 8[9]Patton R J,Chen J.Review of parity space approaches to fault diagnosis for aerospace system[J].Journal of Guidance,Control and Dynamics,1994,17(2):278-285.
  • 9[10]Himmelblau D M.Fault Detection And Diagnosis In Chemical And Petrochemical Processes[M].Amsterdam:Elsevier Press,1978.
  • 10[11]Iri M,AokiK,O'Shinma E,et al.Analgorithm for diagnosis of system failures in the chemical process[J].Computers and Chemical Engineering,1979,3(1-4):489-493.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部