期刊文献+

主题相关的虚拟读者社区推荐方法研究 被引量:1

Research on Topic Related Recommendation Method for Virtual Reader Community
原文传递
导出
摘要 【目的】为了帮助读者从海量的虚拟读者社区中选择符合其兴趣的社区。【方法】提出基于主题概率模型的读者社区推荐方法,通过发现读者社区的隐含主题,建立起读者与读者社区在不同主题上的联系,并根据社区和读者的主题相似度进行读者社区推荐。【结果】在真实数据上的实验证明该方法能够有效地发现读者社区的隐含主题,相比现有的推荐方法,能够准确地推荐虚拟读者社区。【局限】存在推荐的冷启动问题。【结论】该推荐方法帮助读者准确迅速地找到感兴趣的主题相关虚拟读者社区,能够促进读者的沟通交流和虚拟读者社区的发展。 [Objective] To help readers select interested communities from massive reader communities. [Methods] This paper proposes virtual reader community recommendation method based on probabilistic topic model, which builds reader-reader and reader-community relations on different topics by finding latent topics of reader communities, and then recommends reader communities by considering topic similarities of both communities and readers. [Results] Experiments on real data prove that the method can effectively find latent topics of reader communities and accurately recommend virtual reader communities compared with existing recommendation methods. [Limitations] Exist cold start problem of recommendation. [Conclusions] This method helps readers accurately and quickly find interested topic-related virtual reader community, promoting the communication of readers and the development of virtual reader communities.
作者 洪亮 冉从敬
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第9期51-57,共7页 New Technology of Library and Information Service
基金 国家社会科学基金重大项目"国家知识产权文献及信息资料库建设研究"(项目编号:10&ZD133) 国家自然科学基金青年科学基金项目"移动社会网络中基于信任关系的情境感知推荐研究"(项目编号:61303025) 湖北省自然科学基金面上项目"移动社会网络中基于信任关系的情境感知推荐方法研究"(项目编号:2012FFB04201)的研究成果之一
关键词 读者社区 推荐 主题概率模型 协同过滤 Reader community Recommendation Probabilistic topic model Collaborative filtering
  • 相关文献

参考文献13

  • 1胡昌平,乐庆玲.高校图书馆虚拟社区构建初探[J].现代图书情报技术,2007(11):87-90. 被引量:26
  • 2刘炜,葛秋妍.从Web2.0到图书馆2.0:服务因用户而变[J].现代图书情报技术,2006(9):8-12. 被引量:212
  • 3Adomavicius G, Tuzhilin A. Toward the Next Generation ofRecommender Systems: A Survey of the State-of-the-art andPossible Extensions [J], IEEE Transactions on Knowledgeand Data Engineering, 2005, 17(6): 734-749.
  • 4Pazzani M J. A Framework for Collaborative, Content-basedand Demographic Filtering [J]. Artificial Intelligence Review,1999, 13(5-6): 393-408.
  • 5Goldberg D, Nichols D, Oki B M, et al. Using CollaborativeFiltering to Weave an Information Tapestry [J]. Communi-cations of the ACM, 1992, 35(12): 61-70.
  • 6Baatarjav E A, Phithakkitnukoon S, Dantu R. GroupRecommendation System for Facebook [A]//On the Move toMeaningful Internet Systems: OTM 2008 Workshops [C].Springer Berlin Heidelberg, 2008: 211-219.
  • 7Kim H K, Oh H Y,Gu J C, et al. Commenders: A Recommen-dation Procedure for Online Book Communities [J].Electronic Commerce Research and Applications, 2011,10(5): 501-509.
  • 8Zheng N,Li Q,Liao S,et al. Flickr Group RecommendationBased on Tensor Decomposition [C]. In: Proceedings of the33rd International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. ACM, 2010: 737-738.
  • 9Chen W Y, Chu J C, Luan J, et al. Collaborative Filtering forOrkut Communities: Discovery of User Latent Behavior [C].In: Proceedings of the 18th International Conference onWorld Wide Web. ACM, 2009: 681-690.
  • 10Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J].Journal of Machine Learning Research, 2003' 3: 993-1022.

二级参考文献20

  • 1范并思,胡小菁.图书馆2.0:构建新的图书馆服务[J].大学图书馆学报,2006,24(1):2-7. 被引量:560
  • 2刘佳,樊治平,杨国梁.一种面向知识共享的虚拟社区模型框架[J].管理学报,2006,3(2):190-194. 被引量:23
  • 3胡昌平,晏浩.知识管理活动创新性研究之协同知识管理[J].中国图书馆学报,2007,33(3):95-97. 被引量:54
  • 4NEWMAN M E J.Detecting community structure in networks[J].European Physical Journal B:Condensed Matter and Complex Systems,2004,38(2):321-330.
  • 5NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E:Statistical,Nonlinear,and Soft Matter Physics,2004,69(2):026113.
  • 6BARNA S,LISE G.Group proximity measure for recommending groups in online social networks[C/OL]//SNA-KDD'08:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2008[2009-05-22].http://www.cs.umd.edu/- bama/snakdd-08.pdf.
  • 7BACKSTROM L,HUITENLOCHER D,KLEINBERGJ,et al.Group formation in large social networks:Membership,growth,and evolution[C]//KDD '06:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2006:44-54.
  • 8MISHRA N,SCHREIBER R,STANTON I,et al.Clustering the social networks[C]//WAW2007:5th Workshop on Algorithms and Models for the Web-Graph,LNCS 4863.Berlin:Springer-Verlag,2007:56-67.
  • 9MISLOVE A,MARCON M,GUMMADI K P,et al.Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement.New York:ACM Press,2007:29-42.
  • 10KLEINBERG J,SANDLER M.Using mixture models for collaborative filtering[C]// Proceedings of the 36th Annual ACM Symposium on Theory of Computing.New York:ACM Press,2004:569-578.

共引文献240

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部