摘要
【目的】为了帮助读者从海量的虚拟读者社区中选择符合其兴趣的社区。【方法】提出基于主题概率模型的读者社区推荐方法,通过发现读者社区的隐含主题,建立起读者与读者社区在不同主题上的联系,并根据社区和读者的主题相似度进行读者社区推荐。【结果】在真实数据上的实验证明该方法能够有效地发现读者社区的隐含主题,相比现有的推荐方法,能够准确地推荐虚拟读者社区。【局限】存在推荐的冷启动问题。【结论】该推荐方法帮助读者准确迅速地找到感兴趣的主题相关虚拟读者社区,能够促进读者的沟通交流和虚拟读者社区的发展。
[Objective] To help readers select interested communities from massive reader communities. [Methods] This paper proposes virtual reader community recommendation method based on probabilistic topic model, which builds reader-reader and reader-community relations on different topics by finding latent topics of reader communities, and then recommends reader communities by considering topic similarities of both communities and readers. [Results] Experiments on real data prove that the method can effectively find latent topics of reader communities and accurately recommend virtual reader communities compared with existing recommendation methods. [Limitations] Exist cold start problem of recommendation. [Conclusions] This method helps readers accurately and quickly find interested topic-related virtual reader community, promoting the communication of readers and the development of virtual reader communities.
出处
《现代图书情报技术》
CSSCI
北大核心
2014年第9期51-57,共7页
New Technology of Library and Information Service
基金
国家社会科学基金重大项目"国家知识产权文献及信息资料库建设研究"(项目编号:10&ZD133)
国家自然科学基金青年科学基金项目"移动社会网络中基于信任关系的情境感知推荐研究"(项目编号:61303025)
湖北省自然科学基金面上项目"移动社会网络中基于信任关系的情境感知推荐方法研究"(项目编号:2012FFB04201)的研究成果之一
关键词
读者社区
推荐
主题概率模型
协同过滤
Reader community Recommendation Probabilistic topic model Collaborative filtering