期刊文献+

基于评论产品属性情感倾向评估的虚假评论识别研究 被引量:20

Research on Product Review Attribute-Based of Emotion Evaluate Review Spam Detection
原文传递
导出
摘要 【目的】提出一种基于评论产品属性情感倾向评估模型(Review Attribute of Product-Based Emotion Evaluate,RAPBEE模型),用于在线商品虚假评论的识别。【方法】针对在线商品虚假评论采用评论产品属性情感倾向离群度量方法,结合已有评论效用研究对评论结果进行综合排序,从而得出评论的可信度序列。【结果】基于R语言实现,在模型试验集上,通过RAPBEE模型识别处理后的评论序列和当前商品真实情况的符合度为86.2%,实验结果表明RAPBEE模型有较强的实际应用能力与适应度。【局限】需要依赖于已有属性词典的建模方式,在大规模的数据运行效率上有待改进。【结论】提供一种新的针对中文商品虚假评论识别处理方法,具有较强的扩展能力。 [Objective] A model of Review Attribute of Product-Based Emotion Evaluate(RAPBEE) Model is proposed to detect fake reviews of online products. [Methods] Combined with the known research on the reviews effectiveness evaluation, the measuring method of review attribute of product-based emotion outlier detection is used to comprehensive sort the reliability of the reviews, so as to detect the fake reviews. [Results] The test data set is based on the R language to run the model, the results show that after calculated by the RAPBEE model the review sequencing has achieved 86.2% of agreement compared with the real situation which indicates that the RAPBEE model has a strong practical ability and fitness. [Limitations] The model stability depends on the modeling way of the attribute dictionary and the method also can be improved when dealing with large amounts of data set(Big Data). [Conclusions] The paper proposes a new method to deal with the Chinese fake reviews expandability in reality. detection of online products, and this method has a strong
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第9期81-90,共10页 New Technology of Library and Information Service
基金 国家大学生创新性实验计划(A类)基金项目"在线商品虚假评论识别及其治理研究"(项目编号:220-20111201316)的研究成果之一
关键词 情感倾向 虚假评论 垃圾评论 商品评论 虚假评论识别 Emotion tendency Fake reviews Spare reviews Reviews of online products Reviews spam detection
  • 相关文献

参考文献20

  • 1Jindal N, Liu B. Analyzing and Detecting Review Spam[C].In: Proceedings of the 7th IEEE International Conference onData Mining (ICDM’07), Washington, D C: IEEE ComputerSociety, 2007: 547-552.
  • 2Jindal N, Liu B. Review Spam Detection [C]. In: Proceedingsof the 16th International Conference on World Wide Web(WWW,07). New York: ACM, 2007: 1189-1190.
  • 3Jindal N, Liu B. Opinion Spam and Analysis [C]. In:Proceedings of the 2008 International Conference on WebSearch and Data Mining (WSDM’08). New York: ACM,2008: 219-230.
  • 4Jindal N, Liu B, Lim E. Finding Unusual Review Patterns UsingUnexpected Rules [C]. In: Proceedings of the 19th ACMInternational Conference on Information and KnowledgeManagement (CIKM510). New York: ACM, 2010: 1549-1552.
  • 5林煜明,王晓玲,朱涛,周傲英.用户评论的质量检测与控制研究综述[J].软件学报,2014,25(3):506-527. 被引量:48
  • 6孟美任,丁晟春.虚假商品评论信息发布者行为动机分析[J].情报科学,2013,31(10):100-104. 被引量:37
  • 7Liu B. Opinion Spam Detection: Detecting Fake Reviews andReviewers [EB/OL]. [2013-11-12], http://www.cs.uic.edu/-liub/FBS/fake-reviews.html.
  • 8Lim E,Nguyen V,Jindal N, et al. Detecting Product ReviewSpammers Using Rating Behaviors [C] . In: Proceedings ofthe 19th ACM International Conference on Information andKnowledge Management (CIKM’10}. New York: ACM, 2010:939-948.
  • 9Wang G, Xie S,Liu B, et al. Review Graph Based OnlineStore Review Spammer Detection [C]. In: Proceedings of the2011 IEEE 11th International Conference on Data Mining(ICDM’ll). Washington, D C: IEEE Computer Society, 2011:1242-1247.
  • 10Algur S P, Patil A P, Hiremath P S, et al. Conceptual LevelSimilarity Measure Based Review Spam Detection [C]. In:Proceedings of the 2010 International Conference on Signaland Image Processing, IEEE, 2010: 416-423.

二级参考文献39

  • 1王国胤,李德毅,姚一豫,等.云模型与粒计算[M].北京:科学出版社,2012.
  • 2Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales : Online Book Reviews [ J . Journal of Marketing Research,2006,43 (3) :345 -354.
  • 3Ye Q, Zhang Z Q, Law R. Sentiment Classification of Online Re- views to Travel Destinations by Supervised Machine Learning Ap- proaches[ J ]. Expert Systems with Applications, 2009, 36 ( 3 ) : 6527 - 6535.
  • 4Miao Q L, Li Q D, Dai R W. AMAZING : A Sentiment Mining and Retrieval System [ J ]. Expert Systems with Applications, 2009, 36 (3) : 7192 -7198.
  • 5Liu J J,Cao Y B,Lin C Y,et al. Low -quality Product Review De- tection in Opinion Summarization[ C ]. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Associa- tion Computational Linguistics,2007:334 -342.
  • 6Zhang Z. Weighing Stars: Aggregating Online Product Reviews for Intelligent E - commerce Applications [ J ]. IEEE Intelligent Sys- tems, 2008, 23(5):42-49.
  • 7Lau R Y K, Liao S S Y, Xu K Q. An Empirical Study of Online Consumer Review Spam : A Design Science Approaeh [ C ]. In : Proceedings of the 31st International Conference on Information Sys- tems,St. Louis,USA. Aceociation of Information Systems,2010.
  • 8Sen S, Lerman D. Why Are You Telling Me This? An Examination into Negative Consumer Reviews on the Web [ J ]. Journal of Inter- active Marketing, 2007, 21 (4) :76 -94.
  • 9Clemons E K, Gao G D, Hitt L M. When Online Reviews Meet Hyperdifferentiation : A Study of the Craft Beer Industry [ J ]. Jour- nal of Management Information Systems, 2006, 23 (2) : 149 - 171.
  • 10Mudambi S M,Sehuff D. What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon. eom [ J 1. MIS Quarterly, 2010,34( 1 ) :185 -200.

共引文献113

同被引文献193

引证文献20

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部