期刊文献+

颅内异常声压干扰下脑瘫病变区域分割仿真 被引量:4

Intracranial Cerebral Palsy Lesion Area Segmentation Under Abnormal Sound Pressure Disturbance Simulation
下载PDF
导出
摘要 研究脑瘫病变医学图像边缘准确分割问题。脑瘫病变医学图像受到颅内声压的干扰,在采集过程中对病变区域特征属性形成干扰,造成病变区域特征边缘模糊化。传统算法在随机声压干扰下的脑瘫病变医学图像特征边缘模糊,无法形成有效的约束,造成病变区域分割精度下降。为提高精度,提出利用GCA演化模型的脑瘫病变区域分割方法。采集脑瘫病变区域图像,计算图像中不同像素的关联性,为克服干扰,对图像像素进行碰撞运算,实现脑瘫图像边缘增强。计算SUSAN检测算子,获取GAC演化模型,对获取的结果进行抗干扰处理,实现脑瘫病变区域分割。实验结果表明,利用改进算法进行脑瘫病变区域分割,能够避免颅内异常声压的干扰,为临床诊断提供依据。 Research on cerebral palsy lesions medical image recognition accuracy optimization problem. By the interference of intracranial pressure, cerebral palsy lesions in medical images in the lesion area feature attributes in the process of acquisition, cause the lesion area feature edge blur. Traditional algorithms in this random sound pressure under the disturbance of cerebral palsy medical image features of edge blur, can't form effective constraint, causing the deterioration of lesion region segmentation accuracy. Therefore, based on evolution of GCA cerebral palsy lesion region segmentation method of the model. Image acquisition cerebral palsy lesion area, calculating the correlation of different pixel in image, in order to overcome interference, the image pixel collision operation, realize the cerebral palsy image edge enhancement. Calculation, SUSAN detection operator, obtain GAC evolution model, the obtained results are anti-interference processing, realize the cerebral palsy lesion area division. Experimental results show that the improved algorithm for cerebral palsy pathological changes of regional segmentation, to avoid the abnormal intracranial pressure, to provide basis for clinical diagnosis.
作者 夏飙 沈金荣
出处 《计算机仿真》 CSCD 北大核心 2014年第9期292-295,共4页 Computer Simulation
关键词 脑瘫 病变区域分割 声压干扰 Cerebral palsy The lesion region segmentation Sound pressure disturbance
  • 相关文献

参考文献9

二级参考文献59

  • 1吴景岚,朱文兴.基于K均值的迭代局部搜索聚类算法[J].计算机工程与应用,2004,40(22):37-41. 被引量:8
  • 2吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 3杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 4Rafacael C Gonzalez,Richard and E Woods.Digital image processing[M].Beijing:Publishing House of Electronic Industry,2002.
  • 5Sinha N,Ramakrishnan A G.Automation of differential blood count[J].digital object identifier[J].2003,2(15-17):547-551.
  • 6Li Yah, Chi Zheru. MR Brain Image Segmentation Based on Self-Organizing Map Network[ J ]. International Journal of Information Technology,2005,11 ( 8 ) : 45 - 53.
  • 7Gafiychuk V V, Darsko B Y, lzanaylova J. Analysis of data clusters obtained by self- organizing method[ J ]. Physica Astatistical Mechanics and It' s Applications, 2004,341 (10) : 547 - 552.
  • 8Vesanto J, Alhoniemi E. Clustering of the Self - Organizing Map[J ]. IEEE Transactions on Neural Networks, 2000, 11 (3) :586 - 600.
  • 9Strela V, Strang G. The application of multi - wavelet filter banks to image processing[ J ]. IEEE Trans. Image processing, 1999,18(4) ,548 - 563.
  • 10T N T,Lee S L. Wavelets of multiplicity[J]. Trans on Amer Math Soc, 1994,342: 307 - 324.

共引文献219

同被引文献75

引证文献4

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部