期刊文献+

基于新的运动特征的火焰检测方法 被引量:3

Fire Detection Method Based on New Moving Feature
下载PDF
导出
摘要 当前火焰检测方法在刻画火焰特征时忽略了火焰的运动方向信息,从而对于复杂背景环境下的火焰目标可能会产生错误的检测结果。为了更准确的刻画火焰,在层次火焰检测方法的基础上,对多个层面,融入光流法获取的火焰方向信息,提出一种新的火焰运动特征,从而实现火焰检测。首先利用光流获得火焰候选区域每个点在四个方向区域的分布,统计不同区域像素的比例信息获得火焰方向特征;然后在时空层次上结合方向特征进行分析形成火焰频率特征;最后把方向和频率特征结合形成火焰的运动特征,利用核支持向量机(Kernel-SVM)对该特征进行训练,得到火焰检测模型。实验结果表明,火焰运动特征能显著提高火焰检测的准确性和降低误报率。 In order to more accurately characterize the fire feature and improve the fire detection in complex scenarios, a novel moving feature is proposed with the information of optical flow based on the multi-level hierarchical fire detection. First, the direction of each pixel in the fire candidate area is obtained by computing the optical flow and the percentage of pixels whose moving directions fall into four discrete parts is calculated as the orientation fea- ture. Then, the frequency information of change in a period of time is obtained with the information about the orienta- tion of the fire as the frequency feature based on the hierarchy of temporal-spatial. In the end, a new fire moving fea- ture is obtained based on the frequency and the orientation feature. By using support vector machine (kernel-SVM) classifier with the input of the moving feature, the fire detection model is obtained. The experimental results confirm that the feature can significantly improve the accuracy of fire detection and impressively decrease the false alarm rate.
出处 《计算机仿真》 CSCD 北大核心 2014年第9期392-396,共5页 Computer Simulation
基金 河南省科技厅科技攻关项目(142102210010) 河南省教育厅重点研究项目(14A520028 14A520052) 中央高校基本科研业务费具有科研潜质的博士生研究项目资助(YBX-SZC20131031)
关键词 火焰检测 光流 运动特征 频率特征 核支持向量机 Fire detection Optical flow Moving features Frequency feature Kernel SVM
  • 相关文献

参考文献11

  • 1T H Chen, P H Wu, Y C Chiou. An early fire detection method based on image processing[ C]. Image Processing In IEEE lnt Conf on Image Processing, 2004 : 1707-1710.
  • 2T Celik, H Demirel. Fire detection in video sequences using a ge- netic color model[ J ]. Fire Safety Journal,2009,44:147-158.
  • 3X LZhou, FX Yu, YC Wen, ZMLuandGHSong. Early fire detection based on flame contours in video[ J ]. Information Tech- nology Journal, 2010-9:899-908.
  • 4L Wang, et al. Hybrid fire detection using hidden Markov model and luminance map [ J ]. Computers and Electronic Engineering, 2011,37(6) :905-915.
  • 5Z Teng, J H Kim, D J Kang. Fire detection based on hidden Markov models[ J]. International Journal of Control, Automation and Systems, 2010,8(4) :822-830.
  • 6B C Ko, K H Cheong, J Y Nam. Fire detection based on vision sensor a support vector machines[ J]. Fire Safety Journal, 2009, 44(3 ) :322-329.
  • 7T X Truong, J M Kim. Fir flame detection in video sequences u- sing multi - stage pattern recognition techniques [ J ]. Engineering Applications of Artificial Intelligence, 2011,25 (7) :1365-13722.
  • 8王文豪,陈晓兵,刘金岭.基于连通区域和SVM特征融合的火灾检测[J].计算机仿真,2014,31(1):383-387. 被引量:8
  • 9杨俊,王润生.基于计算机视觉的视频火焰检测技术[J].中国图象图形学报,2008,13(7):1222-1234. 被引量:26
  • 10A Bruhn, et al. Real-time optic flow computation with variational methods[J].Computer Analysis of Images and Patterns, 2003.

二级参考文献55

  • 1袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 2Davis W, Notarianni K. NASA fire detection study [ A ]. In: Proceedings of Fire Research and Safety, 13th Joint Panel Meeting [C], Gaithersburg, MD,1997, 2:419-422.
  • 3Cleary T, Grosshandler W. Survey of Fire Detection Technologies and System in Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments [ R ]. NISTIR 6356, Gaithersburg, MD, USA: National Institute of Standards and Technology,1999.
  • 4Miller J C, Smith M L, McCauley M E. Crew Fatigue and Performance on US Coast guard Cutters [ R]. CG-D-10-99, Croton, CT, USA: United States Coast Guard Research and Development Center, 1999.
  • 5Mary W Green. Thee appropriate and effective use of security technologies in U. S. Schools. [ R]. NCJ -178265, Sandia, USA: Sandia National Laboratories, 1999.
  • 6Albers B W, Agrawal A K. Schlieren analysis of an oscillating gas-jet diffusion [J]. Combustion and Flame, 1999, 119(1): 84-94.
  • 7Chamberlin D S, Rose A. The First Symposium (International) on Combustion [ M]. Pittsburgh, USA: The Combustion Institute, 1965:27 - 32.
  • 8Haering N C, Qian R J, Sezan M I. A semantic event-detection approach and its application to detecting hunts in wildlife video [ J]. IEEE Transactions on Circle System Video Technology, 2000, 10(6) : 857 -868.
  • 9Javed O, Shah M. Tracking and object classification for automated surveillance [ A ]. In : Proceedings of the 7th European Conference on Computer Vision ( ECCV' 02) [ C], Berlin, Germany: Springer- Verlag, 2002:343 - 357.
  • 10Naphade M R, Kristjansson T, Frey B, et al. Probabilistic multimedia objects (multijects) : a novel approach to video indexing and retrieval in multimedia systems [ A ]. In: Proceedings of the IEEE International Conference on Image Processing (ICIP'98) [C ], Chicago, Illinois, UAS, 1998, 3:536-540.

共引文献30

同被引文献14

  • 1程鑫,王大川,尹东良.图像型火灾火焰探测原理[J].火灾科学,2005,14(4):239-245. 被引量:37
  • 2BYOUNGMOO L,DONGIL H. Real-time fire detection u- sing camera sequence image in tunnel environment[ J]. In- ternational journal of information acquisition, 2007,4681 ( 3 ) : 1209-1220.
  • 3HE S M,YANG X N,ZENG S T,et al. Computer vision based real-time fire detection method[ J]. Journal of infor- mation &computational science, 2015,12 ( 2 ) : 533-545.
  • 4LIU Z G, YANG Y, JI X H. Flame detection algorithm based on a saliency detection technique and the uniform lo- cal binary pattern in the YCbCr color space [ J ]. Signal im- age & video processing, 2015 (6) : 1-8.
  • 5LIN C, YU C X. Image segmentation based on maximum entropy and kernel self-organizing map [ C ]/! 2012 Spring Congress on IEEE Engineering and Technology(S-CET). Xihn:[s. n. ], 2012:1-4.
  • 6YU C, ZHANG Y, FANG J, et al. Video smoke recogni- tion based on optical flow [ C ]// International Conference on IEEE Advanced Computer Control (ICACC). Sheny- ang : [ s. n. ] ,2010,2 : 16-21.
  • 7严云洋,唐岩岩,郭志波,高尚兵.融合色彩和轮廓特征的火焰检测[J].微电子学与计算机,2011,28(10):137-141. 被引量:18
  • 8王媛彬,马宪民.基于特征融合的图像型火灾探测方法[J].计算机工程,2011,37(19):166-167. 被引量:4
  • 9姚太伟,王慧琴,胡燕.基于小波变换和稀疏光流法的火灾烟雾检测[J].计算机工程,2012,38(6):204-206. 被引量:17
  • 10黄正宇,缪小平,芮挺.基于图像的火焰检测中无量纲动态特征研究[J].计算机应用,2012,32(7):1894-1898. 被引量:6

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部