期刊文献+

一类I型一致不变凸条件下的极大极小分式规划问题

Minimax Fractional Programming Problem under a Class of Type I Univexity
原文传递
导出
摘要 为一个极大极小分式规划问题(P)提出了一类新的广义(F,α,ρ,θ)-d-V-I型一致不变凸函数的概念,并在此广义I型一致不变凸性条件下,获得了规划(P)的一些最优性充分条件。而且,建立了规划(P)一个新的对偶模型,并在前述条件下,证明了弱对偶、强对偶和严格逆对偶定理。本文所得结果推广和改进了文献的一些相应结果。 A new class of generalized (F,a,ρ,θ)-d-V-I type univex functions is introduced for a minimax fractional programming problem (P) and some sufficient optimality conditions for the problem (P) are obtained under the assumptions of generalized type I univexity. Moreover, a new dual model of programming (P) is formulated and weak duality, strong duality and strict converse duality theorems are proved under the aforesaid assumptions. The results obtained in this paper extend and improve some corresponding results in the literature.
作者 焦合华
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期8-12,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.61373174) 重庆市教委科学研究项目(No.KJ131314) 长江师范学院重点项目(No.2013XJZD006)
关键词 极大极小规划 分式规划 广义I型一致不变凸性 对偶性 最优性 minimax programming fractional programming generalized type I univexity duality optimality
  • 相关文献

参考文献13

  • 1Yadav S R, Mukherjee R N. Duality for fractional minimax programming problems[J]. J Aust Math Soc Set B, 1990, 31(4) :484-492.
  • 2Chandra S, Kumar V. Duality in fractional minimax pro- gramming[J]. J Aust Math Soc Ser A, 1995,58 (3) : 376- 386.
  • 3Liu J C,Wu C S, Sheu R L. Duality for fractional minimax programming[J]. Optim, 1997,41 (2) : 117-133.
  • 4Liu J C, Wu C S. On minimax fractional optimality condi- tions with invexity[J]. J Math Anal Appl, 1998,219 (1) : 21-35.
  • 5Liu J C,Wu C S. On minimax fractional optimality condi- tions with (F,p) convexity[J]. J Math Anal Appl, 1998, 219(1) :36-51.
  • 6Yang X M, Hou S H. On minimax fractional optimality and duality with generalized convexity[J]. J Glob Optim, 2005, 31 (2):235-252.
  • 7Bettor C R,Chandra S,Suneja S K,et al. Univex sets,func- tions and univex nonlinear programming[J]. Lecture Notes in Economies and Mathematical Systems, 1994,405 ( 1 ) : 3- 18.
  • 8Rueda N G, Hanson N G, Singh C. Optimality and duality with generalized convexity[J]. J Optim Theory Appl, 1995, 86(2):491-500.
  • 9Yuan D H, Liu X L,Chinehuluun A, et al. Nondifferentiable minimax fractional programming problems with (C,a,p, d)-convexity[J]. J Optim Theory Appl, 2006,129 ( 1 ) : 185- 199.
  • 10Long X J, Quan J. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity[J]. Numerical Algebra,Control and Optimality, 2011,1(3) :361-370.

二级参考文献13

  • 1Yadav S R, Mukherjee R N. Duality for fractional minimax programming problems[J].J Aust Math Soc Ser B, 1990, 31(4) :484-492.
  • 2Chandra S, Kumar V. Duality in fractional minimax pro- gramming[J].J Aust Math Soc Ser A,1995,58(3):376- 386.
  • 3Liu J C,Wu C S. On minimax fractional optimality conditions with invexity[J]. J Math Anal Appl,1998,219(1) :21-35.
  • 4Ahmad I. Optimality conditions and duality in fractional minimax programming involving generalized vinvexity[J].Inter J Manag Syst,2003,19(1) :165-180.
  • 5Yang X M, Hou S H. On minimax fractional optimality and duality with generalized convexity[J]. J Glob Optim, 2005, 31 (2) : 235-252.
  • 6Mangasarian O L. Second and higher order duality in non- linear programming[J]. J Math Anal Appl, 1975,51 (3) : 607- 620.
  • 7Bector C R, Chandra S, Husain I. Second order duality for a minimax programming problem [J].Opsearch, 1991, 28 ( 2 ) : 249-263.
  • 8Liu J C. Second order duality for minimax programming [J]. Util Math,1999,56(1) :53-63.
  • 9Husain Z,Jayswal A, Ahmad I. Second order duality for non- differentiable minimax programming problems with generalized convexity[J].J Glob Optim,2009,44(4) :593-608.
  • 10Husain Z, Ahmad I, Sharma S. Second-order duality for minmax fractional programming[J].Optim Lett, 2009, 3(2) :277-286.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部