期刊文献+

向量值D-半预不变真拟凸映射的判定与性质 被引量:4

Characterizations and Criterions of D-Semiprequasi-invex Mappings
原文传递
导出
摘要 提出了一类新的向量值映射—D-半预不变真拟凸映射,它是D-预不变真拟凸映射与D-半预不变凸映射的真推广。首先,给出例子说明半不变凸集、D-半预不变真拟凸映射的存在性;然后,给出了相关集合的稠密性结果以及在下D-半连续条件下D-半预不变真拟凸映射的判定,并建立了D-半预不变真拟凸映射与D-严格/半严格半预不变真拟凸映射间的关系;最后,讨论了D-半严格半预不变真拟凸映射在向量优化问题中的一个应用,并举例验证了所得结论的正确性。 A class of new vector valued generalized convex mappings--D-semiprequsai-invex mappings, which is a true generalization of D-prequasi-invex mapping[14] and D-semipre-invex mapping[15], is given in this paper. Firstly, examples are given to show the existence of semi-invex sets and D-semiprequasi-invex mappings. Secondly, the density result of corresponding set and a criterion of D-semiprequasi-invexity under the condition of D-lower semicontinuous are given. Then, the relationships among D-semiprequasi- invexity, D-strictly semiprequasi-invexity and D-semistrictly semiprequasi-invexity are discussed; Finally, an important application of D-semiprequasi-invexity in vector optimization problem is obtained, and some examples are given to illustrate the results.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期18-25,共8页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11271389) 国家青年基金(No.11301571) 重庆市自然科学基金(No.2012jjA00016) 重庆市教委基金项目(No.KJ130428) 重庆交通大学创新训练项目(2014年)
关键词 半不变凸集 D-半预不变真拟凸映射 判定定理 向量优化 应用 semi-invex sets D- semi-prequasi-invex mappings criterion vector optimization applications
  • 相关文献

参考文献14

  • 1Hanson M A. On sufficiency of the Kuhn-Tucker condi tions[J]. Journal of Mathematical Analysis and Applica- tions, 1981,80 (2) : 545-550.
  • 2Ben-Israel A,Mond B. What is invexity?[J]. Journal of the Australian Mathematical Society, 1986,28 : 1-9.
  • 3Weir T,Jeyakumar V. A class of nonconvex functions and mathematical programming [J].Bulletin of Australian Mathematical Society, 1998,38 : 177-189.
  • 4Yang X M, Li D. On properties of preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2001, 256(1) :229-241.
  • 5Yang X M, Li D. Semistrictly preinvex functions[J]. Jour- nal of Mathematical Analysis and Applications, 2001,258 (1) : 287-308.
  • 6Yang X Q,Chen G. A class of nonconvex functions and pre- variational inequalities[J]. Journal of Mathematical Analy- sis and Applications, 1992,169 (2) : 359-373.
  • 7Peng Z Y,Chang S S. Some properties of semi-G-preinvex- functions[J]. Taiwan Residents Journal of Mathematics, 2013,17 (3) :873-884.
  • 8Antczak T. G-pre-invex functions in mathematical pro- gramming[J]. Journal of Computational and Applied Math- ematics, 2008,217: 212-226.
  • 9Kazmi K R. Some remarks on vector optimization problems[J]. Journal of Optimization Theory and Applications, 1998,96(1) :133-138.
  • 10Peng J W, Zhu D L. On D-preinvex type functions[J]. Journal of Inequalities and Applications, 2006, Article ID 93532:1-14.

二级参考文献14

  • 1Hanson M A. On sufficiency of the Kuhn-Tucker conditions[J].Journal of Mathematical A?nalysis and Applications, 1981, 80( 2) : 545-550.
  • 2Ben- Israel A, Mond B. What is invexity?[J].Journal of the Australian Mathematical Socie?ty, 1986,28: 1-9.
  • 3Weir T,Jeyakumar V. A class of nonconvex functions and mathematical programming[J] . Bulletin of Australian Mathematical Society, 1988,38: 177-189.
  • 4Yang X M, Li D. On properties of preinvex functions[J].Journal of Mathematical Analysis and Applications, 2001, 256( 1) : 229-241.
  • 5Yang X M, Li D. Semistrictly preinvex functionsJ J].Journal of Mathematical Analysis and Applications, 2001, 258( 1) : 287-308.
  • 6Yang X Q, Chen G Y. A class of nonconvex functions and pre-variational inequalities[J]. Journal of Mathematical Analysis and Applications, 1992, 169(2) : 359-373.
  • 7Peng Z Y, Chang S S. Some properties of semi-G-preinvex functions[J]. TaiwaneseJournal of Mathematics, 2013, 17( 3) : 873-884.
  • 8Antczak T. G-pre-invex functions in mathematical progranuning[J].Journal of Computation?al and Applied Mathematics, 2008, 217( 1) : 212-226.
  • 9Kazmi K R. Some remarks on vector optimization problems[J] .Journal of Optimization The?ory and Applications, 1998, 96( 1): 133-138.
  • 10PengJ W, Zhu D L. On D-preinvex-type functionsJ J}.Journal of Inequalities and Applica?tions, 2006, 2006: 093532. doi , 10.1155/JW2006/93532.

共引文献17

同被引文献18

  • 1龙宪军,毛小红.关于向量值映射D-η预不变真拟凸的注记[J].云南民族大学学报(自然科学版),2005,14(3):213-215. 被引量:1
  • 2杨新民.半予不变凸性与多目标规划问题[J].重庆师范学院学报(自然科学版),1994,11(1):1-5. 被引量:6
  • 3Luo Hezhi,Wu Huixian,Zhu Yihua.NEW METHODS FOR CHARACTERIZING D-η-PROPERLY PREQUASI-INVEX FUNCTIONS[J].Applied Mathematics(A Journal of Chinese Universities),2006,21(1):107-112. 被引量:4
  • 4Hanson M A.On sufficiency of the Kuhn-Tucker conditions[J].Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
  • 5Weir T,Mond B.Pre-invex functions in multiple objective optimization[J].Journal of Mathematical Analysis and Applications,1988,136(1): 29-38.
  • 6Weir T,Jeyakumar V.A class of nonconvex functions and mathematical programming[J].Bulletin of the Australian Mathematical Society,1988,38(2): 177-189.
  • 7Mohan S R,Neogy S K.On invex sets and preinvex functions[J].Journal of Mathematical Analysis and Applications,1995,189(3): 901-908.
  • 8Yang X M,Li D.On properties of preinvex functions[J].Journal of Mathematical Analysis and Applications,2001,256(1): 229-241.
  • 9Yang X M,Li D.Semistrictly preinvex functions[J].Journal of Mathematical Analysis and Applications,2001,258(1): 287-308.
  • 10Yang J,Yang X.Two new characterizations of preinvex functions[J].Dynamics of Continuous,Discrete & Impulsive Systems B,2012,19(3): 405-410.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部