摘要
主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果F是区域D上的亚纯函数族,且满足L[f]=a0f'+a1f(a0≠0),a,b,c,d为D上的4个全纯函数。如果对任意的f∈F,满足a(z)≠d(z),b(z)+a1(z)a(z)+a0(z)a'(z)≠2c(z),c(z)-a0(z)a'(z)-a1(z)a(z)≠0,f(z)=a(z)L[f](z)=b(z)且L[f](z)=c(z)f(z)=d(z),则F在D正规。
In this paper, we discuss the normality criterion concerning shared holomorphic functions, and prove that if £ bea family of meromorphic functions in a domain D,L[f]=a0f'+a1f(a0≠O), and a,b, c,d be four holomorphic functions in D. For eacha f∈£,if a(z)≠d(z),b(z)+a1(z)a(z)+a0(z)a'(z)≠2c(z),c(z)-a0(z)a'(z)一a1(z)a(z)≠0,f(z)=a(z)→L[f](z)一b(z)and L[f](z)=c(z)→f(z)=d(z), then £is normal in D.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期76-80,共5页
Journal of Chongqing Normal University:Natural Science
基金
Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ130632)
the Found of Chongqing Normal University(No.13XLB024)~~
关键词
亚纯函数
正规族
分担函数
meromorphic functions
normal families
shared function