期刊文献+

基于高斯过程隐变量模型的图像数据降维算法 被引量:4

A Novel Dimension Reduction Algorithm of Image Data Based on Gaussian Process Latent Variable Mode
下载PDF
导出
摘要 针对传统谱算法在数据降维计算复杂度高的缺点,提出一种基于高斯过程隐变量模型的图像数据降维算法。首先,通过高斯过程(Gaussian Process,GP)建立图像数据的概率模型,得到图像数据的隐变量模型;其次,利用概率最大化原则得到最优超参数,通过最优超参数求取最优数据降维结果;最后,实现图像数据降维。选取Yale,ORL两类数据集与传统算法进行人脸识别对比实验,实验结果表明:所提出的算法针对图像数据降维问题有较好的效果,结合支持向量机算法,可有效地对人脸图像进行识别,且有较高的识别率,从而体现出算法对高维数据降维的准确性。 For the characteristics of image data dimension reduction, a novel dimension reduction algrithm based on Gaussian Process Latent Variable Mode (GP-LVM) is proposed. Firstly, the probabilistie model of image data is established by the Gaussian Process (GP) , and the LVM of the data can be gotten. Secondly, the super-parameter can be gotten by the principle of maximum probability, and the optimization results of data dimension reduction can be gotten by the optimization super-parameter. Finally, the image data di- mension reduction can be achieved. The two classes of data sets are selected as the experimental data, which consist of Yale and ORL. The experiment results show that the proposed method has a great effect to reduce dimension of image data. The proposed algrithm com- bine GP-LVM with the support vector machine, and the face recognition can be achieved. It has a great recognition rate, and the pro- posed algrithm has a accuracy for the high dimension data.
出处 《控制工程》 CSCD 北大核心 2014年第5期687-690,共4页 Control Engineering of China
基金 国家自然科学基金(61272253)
关键词 高斯过程隐变量模型 数据降维 人脸识别 超参数 概率最大化 Ganssian Process Latent Variable Mode data dimension reduction face recognition super-parameter maximize probability
  • 相关文献

参考文献15

  • 1Rencher A C and Christensen W F. Methods of Muhivariate Analy- sis[ M ]. Third Edition, Hoboken : Wiley Press, 2012 : 405-433.
  • 2Wang J, Zhou Y S, Du X J, et al. Personal Credit Assessment Based on KPCA and SVM [ C ]. Proceedings of International Con- ference on Business Intelligence and Financial Engincering, 1EEE Press. Beijing, 2012: 25-28.
  • 3Dalai N and Triggs B. Histograms of oriented gradients for human detection[ C]. Proceedings of IEEE Conference on Computer Vi- sion and Pattern Recognition, IEEE Press. San Diego, 2005: 886- 893.
  • 4Balasubramanian M, Schwartz E L. The isomap algorithm and to- pological stability[ J ]. Science, 2002, 295 (5552) : 1-7.
  • 5Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 ( 5500 ) : 2323- 2326.
  • 6Damianou A C, Titsias M K, Lawrence N D, et al: Manifold Rel- evance Determination[C]. Proceedings of the International Confer- ence in Machine Learning. Edinburgh, UK, 2012: 1-8.
  • 7Kim A G, Thomas R C, Aldering G, et al: Standardizing type la supernova absolute magnitudes using Gaussian process data regres- sion [ J ]. The Astrophysical Journal, 2013,766 (2) : 84-130.
  • 8Castillo I. A semiparametric Bcrnstein-von Mises theorem for Gaassian process priors [ J ]. Probability Theory and Related Fields, 2013, 152(1/2) : 53-99.
  • 9Damianou A C, Titsias M K, Lawrence N D. Variational gaussian process dynamical systems[C]. Proceedings of International Con- ference on Advances in Neural Information Processing Systems. Granada, Spain, 2011 : 2510-2518.
  • 10王秀美,高新波,李洁.一种基于高斯隐变量模型的分类算法[J].计算机学报,2012,35(12):2661-2667. 被引量:6

二级参考文献27

  • 1M H Yans, D J Kfiesman, N-Ahuja. I)etectins Faces in Images: A Survey[ J]. IEEE Transaction on Pattern Analysis and Machine In- telligence. 2002,24( 1 ) :34-58.
  • 2Vytautas Perlibakas. Measure.,; for PCA-based Face Recognition [ J ]. Pattern Recognition Letters. 2004,25 (6) :711-724.
  • 3L Wiskott,J M Fellous, N KrUger, et al. Face recognition by elasticbunch graph matching [ C ]. Intelligent Biometric Techniques inFingerprint and Face Recognition. CRC Press, 1999,355-396.
  • 4Yang J, Zhang D, Yang J Y. Two-dimensional PCA: A new ap-proach to appearance-based face representation and recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 5Moghaddam B. Principal manifolds and probabilistic subspaces forvisual recognition [ J ]. IEEE Trans on PAMI, 2002,24 ( 6 ) :780-788.
  • 6Moghaddam B,Pentland A. Probabilistic visual learning for objectrepresentation [ J ]. IEEE Trans on Pattern Analysis and MachineIntelligence,1997,19(7) :696-710.
  • 7Moghaddam B, Jebara T, Pentland A. Bayesian face recognition[J]. Pattern Recognition,2000,33( 11 ) ; 1771 - 1782.
  • 8W S Yambor. Analysis of pea-based and fisher discriminant-basedimage recognition algorithmsf R]. Colorado State University,2000.
  • 9Jones C F. Color face recognition using quatemionic gabor filters[D]. Blacksburg: Virginia Polytechnic Institute and State Univer-sity ,2004.
  • 10Seung H S,Lee D D. The manifold ways of perception[J].Science,2000,(5500):2268-2269.

共引文献38

同被引文献14

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部