期刊文献+

一种面向二维观测模型的压缩感知重构算法 被引量:4

A 2-Dimensional Measurement Model-Oriented Compressed Sensing Reconfiguration Algorithm
下载PDF
导出
摘要 针对目前二维信号压缩感知重构时,常采用的一维化手段效率低、重构性能有待提高等缺陷,基于二维观测模型,提出一种新的压缩感知重构方法,并证明了其有效性。算法通过两个独立感知矩阵对二维信号的行列同时进行压缩感知,并考察信号的整体重构,缓解了传统算法引入的重构人为效应以及问题规模扩张带来的重构压力。理论分析和实验表明,新算法成功重构概率、重构信噪比等性能优于现有典型二维信号重构方法,且其运算复杂度较之一维化方法有所降低。 The existing reconstruction algorithms for 2-D signals, most of which convert the original signals into I-D signals, could be more efficient and accurate. Based on the 2-Dimensional measurement model (2-DMM), a novel recovery algorithm is proposed and then its effectiveness is proved. In 2-DMM, the rows and columns of 2-D signals are measured simultaneously by two independent sensing matrixes. The new algorithm reconstructs the signals as a whole. It relieves the artificial effects and scale expansion caused by the traditional algorithms. Both theoretical analysis and experiment simulation demonstrate that the recovery probability and Reconstruction-SNR performance of the new algorithm are better than those of the existing reconfiguration algorithms under the condition of 2-D measurement. While the operation complexity of the new algorithm is lower than the counterpart of 1-D conversion algorithms.
出处 《宇航学报》 EI CAS CSCD 北大核心 2014年第9期1072-1077,共6页 Journal of Astronautics
基金 国家自然科学基金(41476089) "泰山学者"建设工程专项经费资助
关键词 压缩感知 二维观测模型 重构算法 Compressed sensing 2-Dimensional measurement model Reconfiguration algorithm
  • 相关文献

参考文献17

二级参考文献64

  • 1张云,吴谨,唐永新.合成孔径激光雷达[J].激光与光电子学进展,2005,42(7):48-50. 被引量:26
  • 2Krim H, Viberg M. Two decades of array signal processing research: the parametric approach [ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 - 509.
  • 4Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006, 59(8 ) : 1207 -1223.
  • 5Candes E J. Compressive sampling[ C ]. International Congress of Mathematicians, Madrid, Spain, August 22- 30, 2006.
  • 6Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 - 1306.
  • 7Candes E J, Wakin M B. An introduction to compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21 -30.
  • 8Romberg J. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 14 - 20.
  • 9Paredes J L, Arcw G R, Wang Z M. Uhra-Wideband compressed sensing: channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3) :383 -395.
  • 10Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53 (8) : 3010 -3022.

共引文献44

同被引文献113

  • 1ENDER J, AMIN M G, FORNARO G, et al. Recent advances in radar imagin [From the Guest Editors] [J]. IEEE Signal Processing Magazine, 2014, 31(4), 15, 158.
  • 2CANDES E. The restricted isometry property and its implication for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592.
  • 3BARANIUK R and STEEGHS P. Compressive radar imaging]C]. IEEE Radar Conference, Waltham, MA, 2007: 128-133.
  • 4HERMAN M A and STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 5ENDER J. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
  • 6POTTER L C, ERTIN E, PARKER J T, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 7吴一戎.稀疏微波成像的理论、体制和方法研究[R].中国科学院,2010.
  • 8ROSSI M, HAIMOVICH A M, and ELDAR Y C. Spatial compressive sensing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 419-430.
  • 9LIU Hongchao, JIU Bo, LIU Hongwei, et al. Super-resolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8) 5005-5013.
  • 10WHITELONIS N and LING Hao. Radar signature analysis using a joint time-frequency distribution based on compressed sensing[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 755-763.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部