期刊文献+

社交网络中信息传播的稳定性研究 被引量:9

Stability of information spreading over social network
原文传递
导出
摘要 社交网络已成为当前最重要的信息传播媒体之一,因此有必要研究信息在社交网络上的传播规律.本文探索了包含遏制机制和遗忘机制的信息传播机理,提出了信息传播的模型,给出了信息传播的规则,建立了相应的平均场方程,计算了平衡点和基本再生数R_0,并从理论上证明了平衡点的渐进稳定性.仿真实验分析了遏制机制、遗忘机制等因素对信息传播过程的影响,并验证了所得结论的正确性. Social networks have been developed into one of the most important media for information propagation, and it is necessary to disclose how the information disseminates over social networks. In this paper, we explore the spreading mechanism including information stifling and forgetting, establish a spreading model, and elaborate the spreading rules. According to the spreading model, we build the mean field equation, calculate the two equilibriums and the basic reproduction number R0, and prove theoretically the asymptotical stability of the equilibriums. We analyze the effects of stifling mechanism and forgetting mechanism on the information spreading process, and validate the results of theoretical analysis by numerical simulations.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第18期83-89,共7页 Acta Physica Sinica
基金 长江学者和创新团队发展计划项目(批准号:IRT1078) 国家自然基金委员会-广东联合基金重点基金(批准号:U1135002) 国家科技部重大专项(批准号:2011ZX03005-002) 国家自然科学基金(批准号:61173135) 中央高校基本科研业务费(批准号:JY10000903001 K5051303007 K5051203012)资助的课题~~
关键词 社交网络 传播模型 基本再生数 稳定性 social network, spreading model, basic reproduction number, stability
  • 相关文献

参考文献35

  • 1http://bmi.osu.edu/esaule/public- website/slides/saule13-umassboston.pdf.
  • 2Guan W, Gao H, Yang M, Li Y, Ma H, Qian W, Cao Z, Yang X .2014, Physica A: Statistical Mechanics and its Applications 395 340.
  • 3张彦超,刘云,张海峰,程辉,熊菲.2011,物理学报,60050501.
  • 4Zhao L, Guan X H, Yuan R X .2012, Knowledge and In- formation Systems 31 371.
  • 5Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M .2007, International Conference on Data Mining, Pro- ceedings of the 7th SIAM International Conferenceon Data Mining Minneapolis, Minnesota, USA, April 26-28, .2007, p551.
  • 6Xu R Z, Li H L, Xing C M .2013, Int. J. Comput. Sci. Appl. 1 1.
  • 7May R M, Lloyd A L .2001, Phys. Rev. E 64 066112.
  • 8Moreno Y, Pastor Satorras R, Vespignani A .2002, Europ. Phys. J. B 26 521.
  • 9Yang R, Wang B H, Ren J, Bai W J, Shi Z W, Wang W X, Zhou T .2007, Phys. Lett. A 364 189.
  • 10Wang J, Zhao L, Huang R .2014, Physica A: Statistical Mechanics and its Applications 398 43.

同被引文献154

  • 1刘建香.复杂网络及其在国内研究进展的综述[J].系统科学学报,2009,17(4):31-37. 被引量:74
  • 2吴少华,崔鑫,胡勇.基于SNA的网络舆情演变分析方法[J].四川大学学报(工程科学版),2015,47(1):138-142. 被引量:14
  • 3MURRAY J D. Mathematical biology [ M ]. Berlin : Springer -Verlag, 1993.
  • 4ZANETYE D H. Critical behavior of propagation on small - world networks[J]. Phys. Rev. E, 2001,64: 050901.
  • 5MAY R M, LLOYD A L . Infection dynamics on scale free net- works [J]. Phys. Rev. E, 2001, 64(6) : 066112.
  • 6MORENO Y, NEKOVEE M, PACHECO A F. Dynamics of ru- mor spreading in complex networks [ J ]. Phys. Rev. E, 2004, 69 : 066130.
  • 7YAN G, ZHOU T, WANG JIE, et al. Epidemic Spread in Weighted Scale - free Networks [ J ]. Chinese Phys. Lett. , 2005. 22(2") : 510 -513.
  • 8Leskovec J, McGlohon M, Faloutsos C, et al. Patterns of Cascading Behavior in Large Blog Graphs[ C ]//Prceedings of 2007 SIAM International Conference on Data Mining Minneapolis, Minnesota, USA: 551-556.
  • 9Corporation H P. Impulsive Vaccination SEIR Model with Nonlinear Incidence Rate and Time Delay[ J]. Mathematical Problems in Engineering, 2013(2): 292-319.
  • 10Kawachi K. Deterministic Models for Rumor Transmission [ J ]. Nonlinear Analysis Real World Applications, 2008, 9 (5): 1989-2028.

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部