期刊文献+

基于深度玻尔兹曼模型的红外与可见光图像融合 被引量:2

Infrared and visible image fusion based on deep Boltzmann model
原文传递
导出
摘要 为了克服红外与可见光图像融合时噪声干扰及易产生伪影导致目标轮廓不鲜明、对比度低的缺点,提出一种基于深度模型分割的图像融合方法.首先,采用深度玻尔兹曼机学习红外与可见光的目标和背景轮廓先验,构建轮廓的深度分割模型,通过Split Bregman迭代算法获取最优能量分割后的红外与可见光图像轮廓;然后再使用非下采样轮廓波变换对源图像进行分解,并针对所分割的背景轮廓采用结构相似度的规则进行系数组合;最后进行非下采样轮廓波反变换重构出融合图像.数值试验证明,该算法可以有效获取目标和背景轮廓均清晰的融合图像,融合结果不但具有较高的对比度,还能抑制噪声影响,具有有效性. In the infrared and visible light image fusion, the noise interference always exists. There is also the disadvantage that image fusion is easy to produce artifacts which cause blurred edge and low contrast. In order to solve these problems, in this study we propose an image fusion method based on deep model segmentation. First of all, deep Bolzmann machine is adopted to learn prior target and background contour and construct a contour deep segmentation model. After the optimal energy segmentation, Split Bregman iteration is used to obtain the infrared and visible image contour. Then non-subsampled contourlet transform is adopted to decompose the source images. The segmented background contour coefficients are fused by the structure similarity rule. Finally, the fused image is reconstructed by the non-subsampled contourlet inverse transform. The experimental results show that this algorithm can effectively obtain fused images with clear target contour and background contour. The fused images also have high contrast and low noise. The results show that it is an effective method of achieving the infrared and visible image fusion.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第18期211-219,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51375517) 重庆高校创新团队项目(批准号:KJTD201313) 重庆工商大学校内青年博士基金(批准号:1352007) 重庆市教委自然科学基金(批准号:KJ1400628)资助的课题~~
关键词 深度模型 深度玻尔兹曼机 非下采样轮廓波变换 图像融合 deep model, deep Boltzmann machine, non-subsampled contourlet transform, image fusion
  • 相关文献

参考文献3

二级参考文献18

共引文献24

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部