摘要
研究了一类具有可修故障和不可修故障的两部件并联可修系统.运用C_0半群理论,通过修复率均值的观念,对系统主算子的谱上界进行了估值,并得到该谱上界即为各修复率均值的最小者的相反数.然后运用了共尾的概念及相关的理论,得到了系统主算子的谱上界与系统主算子产生的半群的增长界相等,从而得到其增长界也是各修复率均值的最小者的相反数.
We investigate a class of two-unit parallel repairable system with repairable failures and non.repairable failures. Using C0-semigroup theory and the concept of the mean of service rate functions, we estimate the upper spectral bound of the main operator and obtain that its value is the opposite number of the minimum of the mean of service rate functions. Then we show the growth bound of the main operator share the same value with its upper spectral bound by using the concept of cofinal and relative theory.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第17期218-227,共10页
Mathematics in Practice and Theory
关键词
可修系统
不可修系统
C0半群理论
系统主算子
谱上界
共尾
增长界
repairable system
non-repairable system
C0-semigroup theory
main operator
upper spectral bound
cofinal
growth bound