期刊文献+

一类具有可修故障和不可修故障的两部件并联可修系统的系统主算子的性质

Properties of the Main Operator of a Class of Two-Unit Parallel Repairable System with Repairable Failures and Non-Repairable Failures
原文传递
导出
摘要 研究了一类具有可修故障和不可修故障的两部件并联可修系统.运用C_0半群理论,通过修复率均值的观念,对系统主算子的谱上界进行了估值,并得到该谱上界即为各修复率均值的最小者的相反数.然后运用了共尾的概念及相关的理论,得到了系统主算子的谱上界与系统主算子产生的半群的增长界相等,从而得到其增长界也是各修复率均值的最小者的相反数. We investigate a class of two-unit parallel repairable system with repairable failures and non.repairable failures. Using C0-semigroup theory and the concept of the mean of service rate functions, we estimate the upper spectral bound of the main operator and obtain that its value is the opposite number of the minimum of the mean of service rate functions. Then we show the growth bound of the main operator share the same value with its upper spectral bound by using the concept of cofinal and relative theory.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第17期218-227,共10页 Mathematics in Practice and Theory
关键词 可修系统 不可修系统 C0半群理论 系统主算子 谱上界 共尾 增长界 repairable system non-repairable system C0-semigroup theory main operator upper spectral bound cofinal growth bound
  • 相关文献

参考文献6

二级参考文献20

  • 1徐厚宝,郭卫华,于景元,朱广田.一类串联可修复系统的稳态解[J].应用数学学报,2006,29(1):46-52. 被引量:16
  • 2G F塞蒙斯 张理京(译).微分方程[M].北京:人民教育出版社,1981.432-435.
  • 3Nagel R. One-Parameter Semigroup of Positive Operator[M]. Lecture Notes in Mathematics, Springer-Verlag, New York, 1986.
  • 4Adams R. Sobolev Spaces[M]. Academic Press,New York,1975.
  • 5Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. Springer, New York, 1983.
  • 6Arendt W. Resolvent Positive Operators[M]. Proc London Math Soc,1987,54(3) : 321-349.
  • 7史定华,随机模型的密度演化方法,1999年
  • 8AdamsRA.Sobolev空间[M].北京:人民教育出版社,1983..
  • 9Gupur G, Li X Z, Zhu G T. Functional Analysis Method in Queueing Theory[M]. Research Infor- mation, Hertfordshire, 2001.
  • 10Arendt W. Resolvent Positive Operators[J]. Proc London Math Soc, 1987, 54(3): 321-349.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部