期刊文献+

Supercontinuum generation in a standard single-mode fiber by a Q-switched Tm, Ho:YVO_4 laser 被引量:1

Supercontinuum generation in a standard single-mode fiber by a Q-switched Tm, Ho:YVO_4 laser
原文传递
导出
摘要 Broadband mid-infrared (IR) supercontinuum laser is generated in standard single-mode fiber-28 directly pumped by a 2054 nm nanosecond Q-switched Tm,Ho:YVO4 laser. The average output powers of 0.53 W in the -1.95-2.5 μm spectral band and 0.65 W in the -1.97-2.45 #m spectral band are achieved at pulse rate frequencies of 7 and 10 kHz, and the corresponding optic-to-optic conversion efficiencies are 34.6% and 42.4% by considering the coupling efficiency. The output spectra have extremely high flatness in the range 2060-2400 and 2060-2360 nm with negligible intensity variation (〈2%), respectively. The output pulse shape is not split, and pulse width is reduced from 29 to -15.4 ns. The beam quality factor M^2 is 1.06, measured using traveling knife-edge method, and the laser beam spot is also monitored bv an IR vidicon camera. Broadband mid-infrared (IR) supercontinuum laser is generated in standard single-mode fiber-28 directly pumped by a 2054 nm nanosecond Q-switched Tm,Ho:YVO4 laser. The average output powers of 0.53 W in the -1.95-2.5 μm spectral band and 0.65 W in the -1.97-2.45 #m spectral band are achieved at pulse rate frequencies of 7 and 10 kHz, and the corresponding optic-to-optic conversion efficiencies are 34.6% and 42.4% by considering the coupling efficiency. The output spectra have extremely high flatness in the range 2060-2400 and 2060-2360 nm with negligible intensity variation (〈2%), respectively. The output pulse shape is not split, and pulse width is reduced from 29 to -15.4 ns. The beam quality factor M^2 is 1.06, measured using traveling knife-edge method, and the laser beam spot is also monitored bv an IR vidicon camera.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第9期24-28,共5页 中国光学快报(英文版)
关键词 mode HO KHZ SC
  • 相关文献

参考文献21

  • 1P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Miicke, and B. Janker, Opt. Laser Eng. 37, 101 (2002).
  • 2Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, Opt. Express 18, 22762 (2010).
  • 3K. Karstada, A. Stefanova, M. Wegmullera, H. Zbindena, N. Gisina, T. Aellenb, M. Beckb, and J. Faistb,Opt. Laser Eng. 43, 101 (2005).
  • 4R. W. Waynant, I. K. Ilev, and I. Gannot, Philos. Trans. R. Soc. Lond. A 359, 635 (2001).
  • 5H. W. Li, D. A. Harris, B. W. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, Appl. Opt. 48, B17 (2009).
  • 6K. D. F. Biichter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, Opt. Lett. 34, 470 (2009).
  • 7R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, Laser Phys. Lett. 6, 575 (2009).
  • 8I. Zeylikovich, V. Kartazaev, and R. Alfano, J. Opt. Soc. Am. B 22, 1453 (2005).
  • 9J. Shu, P. Yan, J. Zhao, J. Zhao, S. Ruan, H. Wei, and J. Luo, Chin. Opt. Lett. 10, S10602 (2012).
  • 10W. J. Wadsworth, A. O. Blanch, J. C. Knight, T. A. Birks, T. P. Martin Man, and P. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部