期刊文献+

利用光散射特性研究光学表面中瑞利缺陷粒子的方位诊断 被引量:3

The Diagnosis of Rayleigh Defect Particle Position by Light Scattering Character on the Optical Surface
下载PDF
导出
摘要 基于偏振双向反射分布函数,从理论上推导了瑞利缺陷粒子分别位于光学表面上方和基底内部的散射场,研究了光学表面瑞利缺陷粒子的方位诊断问题.通过对不同波长下冗余缺陷粒子位于不同方位时双向反射分布函数pp项的分析与讨论实现对缺陷位置的初步判断.结果表明,SiO2瑞利缺陷粒子位于裸基底上方时,双向反射分布函数pp项受波长影响的敏感程度远大于位于SiO2涂覆上方时,可以通过测量缺陷粒子对波长变化的敏感程度判断缺陷粒子的大致方位;当缺陷粒子在Si基底下方时,方位角的凹痕出现在85°到90°之间,当缺陷粒子在SiO2涂层下方时,方位角的凹痕出现在70°左右,因此,可以根据方位角凹痕位置的不同实现对缺陷粒子方位的进一步诊断. Based on the polarized bidirectional reflectance distribution function , the scattering fields of Rayleigh defect particle on the optical surface or inlay the substrate were derived to solve the diagnosis of the particle position. By analysis and discussion of bidirectional reflectance distribution function of pp about redundant defect particles with different wavelength , the positions of defect particles were identified preliminary. The results show that the sensing degree of wavelength with particles on the substrate is more than particles on the SiO2 coating. Therefore, the position of defect particle is judged by measuring the sensing degree of wavelength. The angle dent appears between 85° and 90° with the defect particles in the Si substrate, while the angle dent appears around 70° with the defect particles in the SiO2 coating. The angle dent is used to judge the particle position further in the project.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第8期209-214,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61308071 61172031) 陕西省自然科学基金资助项目(No.2013JQ8018) 陕西省教育厅自然科学专项资助项目(Nos.2013JK0633 2013JK1108) 陕西省光电测试与仪器技术重点实验室开放基金资助
关键词 光散射 方位诊断 偏振双向反射分布函数 光学表面 瑞利粒子 Light scattering ~ Position diagnosis PBRDF Optical surface Rayleigh particle
  • 相关文献

参考文献15

  • 1田爱玲,王会婷,党娟娟,王春慧.抛光表面的亚表层损伤检测方法研究[J].光子学报,2013,42(2):214-218. 被引量:13
  • 2项震,赵亚洲,侯晶,葛剑虹.减少光学元件亚表面缺陷的方法研究[J].光子学报,2009,38(5):1226-1230. 被引量:3
  • 3PAN Yong-qiang, WU Zhen-sen, HANG Ling-xia. Investigation of interface roughness cross-correlation properties of optical thin films from total scattering losses[J]. Applied Surface Science, 2010, 256(11) : 3503-3507.
  • 4PAN Yong-qiang, WU Zhen-sen, HANG Ling-xia. Light scattering losses of high reflection dielectric multilayer optical devices[J]. Thin Solid Films, 2010, 518: 2001-2005.
  • 5EREMINA E, EREMIN Y, WRIEDT T. Computational nano-optie technology based on discrete sources method[J]. Journal of Modern Optics, 2011, 58(5-6) : 384-399.
  • 6GRISHINA N, EREMINA E, EREMIN Y, et al. Modelling of different TIRM setups by the discrete sources method[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(11) : 1825-1832.
  • 7MIRZA K, ROMAN S, VLADIMIR S, et al. Comparison of numerical methods in near-field computation for metallic nanoparticles[J]. Optics Express, 2011, 19(9): 8939-8953.
  • 8ROMAN S, VLADIMIR S, WRIEDT T, et al. Implementation and investigation of iterative solvers in the discrete sources method [J ]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112 (11) : 1697- 1704.
  • 9ELENA E, YURI E, THOMAS W. Computational nano-optictechnology based on discrete sources method[J]. Journal of Modern Optics, 2011, 58(5-6): 384-399.
  • 10巩蕾,吴振森,高明.基片与不同方位多形态缺陷粒子的复合光散射特性分析[J].光学学报,2012,32(6):265-270. 被引量:8

二级参考文献51

共引文献32

同被引文献34

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部