期刊文献+

基于群智能算法的WSNs动态联盟任务协同 被引量:2

Dynamic alliance collaborative tasks of WSNs based on swarm intelligence algorithm
下载PDF
导出
摘要 针对无线传感器网络(Wireless sensor networks,WSNs)中单个节点的计算能力有限、完成数据发送任务比较困难的问题,提出一种协同处理的方式传送数据,可以将协同任务分为感知子任务和计算子任务。在传感节点任务协同的动态联盟中,引入基于粒子群算法优化蚁群算法(Particle swarm optimization ant colony algorithm,PSO-ACO)构建传感网的数据汇集路由树。利用传感器网络在采集数据之间的相关性,运用群智能算法来优化节点发送数据的传输路径,以保证动态联盟执行任务时的连续性,在一定程度上保证传感网的性能,从而降低了通信能耗。仿真实验表明:当传感器网络的感知节点与网络节点总数的比值小于28%时,网络监测性能最优,该文方案可以消除同一任务检测传感器节点冗余、降低系统能量消耗。 In response to the limited computing power and difficulties in completing data transmission of a single node in wireless sensor networks ( WSNs ) , this paper proposes a co-processing data-transmitting method that can divide the cooperative task into perception and computation. By introducing the particle swarm optimization ant colony algorithm ( PSO-ACO ) into the dynamic alliance of task collaboration of sensing nodes,the data collection routing tree of the sensor network is built. Based on the correlation of data collection in the sensor network, the swarm intelligence algorithm is used to optimize the transmission path of the data sent by the nodes to ensure the continuity of the dynamic alliance in executing the tasks. In this way,the performance of the sensor network is ensured to some extent and the communication energy consumption is reduced accordingly. Simulation experiments indicate that,the sensor network achieves optimal monitoring performance when the percentage of sensing nodes in the total number of nodes in the network is less than 28%. The scheme proposed here can eliminate the sensor node redundancy detected in the same task and reduce energy consumption of the system.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第4期537-543,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61203304 U1204618)
关键词 无线传感器网络 任务协同 动态联盟 粒子群算法 蚁群算法 计算能力 感知子任务 计算子任务 节点冗余 能量消耗 wireless sensor networks task collaboration dynamic alliance particle swarm optimization ant colony algorithm computing power perception subtasks computation subtasks nodes redundancy energy consumption
  • 相关文献

参考文献9

  • 1Lin Y, Chang S, Sun H. CDAMA: concealed data aggregation scheme for multiple applications in wireless sensor networks [ J ]. IEEE Transactions on Knowledge and Data Engineering,2013,25 (7) : 1471 -1483.
  • 2Chen Ying, Guo Wenzhong, Chen Guolong. A dynamic- alliance-based adaptive task allocation algorithm in wireless sensor networks [ A ]. Proceedings of the Ninth International Conference on Grid and Cooperative Computing[ C ]. Piscataway, N J- IEEE Press, 2010 : 356 -360.
  • 3Bertrand A, Szurley J, Ruckebusch P, et al. Efficient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal estimation and beamforming [ J ]. IEEE Transactions on Signal Processing,2012,60 ( 11 ) :5857-5869.
  • 4Euisin L, Soochang P, Yu F, et al. Communication model and protocol based on multiple static sinks for supporting mobile users in wireless sensor networks [ J ]. IEEE Transactions on Consumer Electronics, 2010,56(3) : 1652-1660.
  • 5Sooyeon S, Taekyoung K, Gil Y, et al. An experimental study of hierarchical intrusion detection for wireless industrial sensor networks [ J ]. IEEE Transactions on Industrial Informatics,2010,6(4) :744-757.
  • 6Chen Chengyu, Guo Wenzhong, Chen Guolong. A new task allocation algorithm based on dynamic coalition in WSNs [ A ]. Parallel and Distributed Processing Symposium Workshops & PhD Forum [ C ]. Piscataway, NJ : IEEE Press,2012 : 1243-1248.
  • 7高德民,钱焕延,严筱永,王晓楠.无线传感器网络最大生命期数据融合算法[J].南京理工大学学报,2012,36(1):55-60. 被引量:10
  • 8张石,张哲,朱吉昌.基于遗传算法的传感器网络动态联盟研究[J].计算机科学,2008,35(4):20-22. 被引量:4
  • 9陈国龙,郭文忠,陈羽中.无线传感器网络任务分配动态联盟模型与算法研究[J].通信学报,2009,30(11):48-55. 被引量:24

二级参考文献36

  • 1王小英,赵海,陈英革,尹震宇.传感器网络的任务双效节能调度研究[J].电子学报,2006,34(5):778-783. 被引量:8
  • 2刘涛,曾国荪,吴长俊.异构网格环境下任务分配的自主计算方法[J].通信学报,2006,27(11):139-143. 被引量:6
  • 3朱敬华,高宏.无线传感器网络中能源高效的任务分配算法[J].软件学报,2007,18(5):1198-1207. 被引量:21
  • 4WEISER M. The computer of the 21 century[J]. Scientific American, 1991, 265(3): 66-75.
  • 5AKYILDIZ I E SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38: 393-422.
  • 6DAVID C, DEBORAH E, MANI S. Overview of sensor network[J]. IEEE Computer, 2004, 37(8): 41-49.
  • 7ARMSTRONG R, HENSGEN D, KIDD T. The relative performance of various mapping algorithms is independent of sizable variances in runtime predictions[A]. Proc of the 7th IEEE Heterogeneous Computing Workshop[C]. Orlando, USA, 1998.79-87.
  • 8FREUND R, GHERRITY M, AMBROS1US S, et al. Scheduling resources in multi-user, heterogeneous, computing environments with smartnet[A]. Proc of the 7th IEEE Heterogeneous Computing Workshop[C]. Orlando, USA, 1998. 184-199.
  • 9BRAUN T, SIEGEL H, BECK N, et al. A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous com- puting systems[A]. Proc of the 8th IEEE Heterogeneous Computing Workshop[C]. San Juan, Puerto Rico, 1999. 15-29.
  • 10WU M Y, SHU W, ZHANG H. Segmented min-min: a static mapping algorithm for meta-tasks on heterogeneous computing systems[A]. Proc of the 9th IEEE Heterogeneous Computing Workshop[C]. Cancun, Mexico, 2000. 375-385.

共引文献34

同被引文献17

引证文献2

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部