期刊文献+

基于ABC-PCNN模型的图像分割 被引量:5

Image segmentation based on ABC-PCNN model
下载PDF
导出
摘要 为使标准脉冲耦合神经网络(Pulse coupled neural network,PCNN)模型在图像分割中能够自适应地调整模型参数与全局阈值,提高分割效果,该文提出一种基于人工蜂群(Artificial bee colony,ABC)算法改进的自适应PCNN模型,即人工蜂群算法-脉冲耦合神经网络(ABCPCNN)模型;提出了改进后的乘积型交叉熵函数,并利用ABC算法将此函数作为其适应度函数优化输出其连接系数和阈值。采用Lena图像和血细胞图像评估PCNN模型和ABC-PCNN模型的性能。实验结果表明:ABC-PCNN模型对图像的自适应分割效果优于PCNN模型。针对血细胞分割图像中存在的重叠区域,该文结合角点和质点坐标定位重叠区域的二次分割线得到最终分割图像,所提算法高效且能得到较好的分割结果。 In order to adjust the model parameters and the global threshold for image segmentation, an improved pulse coupled neural network ( PCNN ) model based on artificial bee colony ( ABC ) algorithm,namely ABC-PCNN,is proposed here. It combines a new criterion of product cross entropy with the standard simplified PCNN model. The product cross entropy is used as the fitness function to optimize the connection output coefficient and threshold value by the ABC algorithm. Lena image and blood cell image are used to evaluate the PCNN model and the ABC-PCNN model respectively. The experimental results show that the adaptive image segmentation by the ABC-PCNN model outperforms that by the PCNN model. As the overlapping areas need secondary segmentation in the segmented blood cell image,corners and center coordinates are used to locate the dividing line and to get the final image segmentation. The method proposed here is effective and can obtain better segmentation results.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第4期558-565,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61201370) 山东省自主创新成果转化重大专项((No.2012CX30202)
关键词 脉冲耦合神经网络 人工蜂群算法 人工蜂群算法-脉冲耦合神经网络模型 乘积型交叉熵 图像分割 pulse coupled neural network artificial bee colony artificial bee colony-pulse coupled neural network product cross entropy image segmentation
  • 相关文献

参考文献20

  • 1Chacon M M I,Mendoza P J A. A PCNN-FCM time series classifier for texture segmentation [ A ]. 2011 Annual Meeting of the North American Fuzzy Information Processing Society [ C ]. El Paso, Texas, USA : IEEE,2011 : 1-6.
  • 2Cao Jie, Wu Di. Face recognition based on pulse coupled neural network [ A ]. 2009 International Conference on Information Engineering and Computer Science [ C ]. Wuhan, China: IEEE,2009 : 1-4.
  • 3石美红,张军英,李永刚.基于差别特征的纹理图像识别研究[J].计算机应用,2004,24(1):66-69. 被引量:3
  • 4Fan Huajun,Zhou Dongming, Nie Rencan, et al. Target face detection using pulse coupled neural network and skin color model[ A]. 2012 International Conference on Computer Science and Service System [ C ]. Nanjing, China: IEEE,2012:2185-2188.
  • 5杨赛,赵春霞.基于空间概率乘积核函数的图像分类算法[J].南京理工大学学报,2014,38(3):325-331. 被引量:5
  • 6Micheli-Tzanakou E, Sheikh H,Zhu B. Neural networks and blood cell identification [ J ]. Journal of Medical Systems, 1997,21 (4) :201-210.
  • 7Wei Shuo, Qu Hong, Hou Mengshu. Automatic image segmentation based on PCNN with adaptive threshold time constant [ J ]. Neurocomputing,2011,74 (9) : 1485 -1491.
  • 8Wang Haiqing, Ji Changying, Gu Baoxing, et al. A simplified pulse-coupled neural network for cucumber image segmentation[ A]. 2010 International Conference on Computational and Information Sciences (ICCIS) [ C ]. Chengdu, China : IEEE, 2010 : 1053 - 1057.
  • 9Chen Yuli, Park Sung-Kee, Ma Yide, et al. A new automatic parameter setting method of a simplified PCNN for image segmentation [ J ]. IEEE Transactions on Neural Networks,2011,22(6) :880-892.
  • 10陈沅涛,徐蔚鸿,吴佳英,胡蓉.基于增量学习向量SVM方法的图像分割应用[J].南京理工大学学报,2014,38(1):6-11. 被引量:5

二级参考文献81

共引文献189

同被引文献54

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部