期刊文献+

供应链库存的模糊机会约束规划模型 被引量:2

Fuzzy chance constrained programming model for supply chain inventory
下载PDF
导出
摘要 研究了不确定环境下的供应链库存优化问题。考虑需求为模糊量,且可能在一定条件下不满足约束条件的决策前提,用三角模糊数表示需求,结合可能性理论中的可信性测度,建立了多品种联合补充的模糊机会约束规划模型,目标函数为最小化供应链订货成本和库存成本的期望值。用遗传算法对优化模型求解,以目标函数值作为染色体适应度,给出了编码方案及选择、交叉、变异算子。用数值实例进行了仿真计算,证明了模型和算法的有效性和性能,并给出了不同置信水平下的计算结果。 Supply chain inventory optimization problem under uncertain environment is concerned. Fuzzy chance con-strained programming model for multi-item joint replenishment is thus proposed, which can take into account fuzzy demand quantity, as well as the constrained conditions are not satisfied to a certain degree. Demand quantity is a triangular fuzzy number, combined with the possibility of credibility measure theory. The objective function is to minimize the expected discounted cost of ordering and inventories in the supply chain. Genetic Algorithm(GA)is used to solve the obtained opti-mality conditions equations, and the fitness function value of the chromosome is the objective value of fuzzy chance con-strained programming model. Chromosome coding, selection, crossover and mutation operations are also studied. The fea-sibility of the model and the effectiveness of the algorithm are illustrated by simulation numerical examples. Some results under different probability level are presented and discussed.
出处 《计算机工程与应用》 CSCD 2014年第17期241-244,共4页 Computer Engineering and Applications
基金 哈尔滨市攻关项目(No.2011AA1CG063) 黑龙江省教育厅资助项目(No.12541142)
关键词 供应链管理 联合补充问题 模糊机会约束规划 三角模糊数 遗传算法 supply chain management joint replenishment problem fuzzy chance constrained programming triangular fuzzy number genetic algorithm
  • 相关文献

参考文献6

二级参考文献75

共引文献66

同被引文献22

  • 1励凌峰,黄培清.供应链中的易腐物品生产-库存协作研究[J].上海交通大学学报,2005,39(3):464-467. 被引量:13
  • 2陈世哲,刘国栋,浦欣,浦昭邦,胡涛,刘宛予.基于优势遗传的自适应遗传算法[J].哈尔滨工业大学学报,2007,39(7):1021-1024. 被引量:31
  • 3Aksoy Y, Erenguc S S. Multi-item inventory models withcoordinated replenishments: A survey [J]. InternationalJournal of Operations and Production Management, 1988,8(1): 63-73.
  • 4Arkin R, Joneja D, Roundy R. Computational complexityof uncapacitated multi-echelon production planningproblems[J]. Operations Research Letters, 1989, 8(2):61-66.
  • 5Goyal S K. Optimum ordering policy for a multi-itemsingle supplier system[J]. Operational Research Quarterly,1974, 25(1): 293-298.
  • 6Goyal S K. Determination of optimum packagingfrequency of jointly replenished items[J]. ManagementScience, 1984, 21(2): 436-443.
  • 7Goyal S K, Belton A S. On a simple method of determiningorder quantities in joint replenishment under deterministicdemand[J]. Management Science, 1979,25(3): 604.
  • 8Silver E A. A simple method of determining orderquantities in joint replenishments under deterministicdemand[J]. Management Science, 1976, 23(6):1351 -1361.
  • 9Kaspi M, Rosenblatt M J. On the economic orderingquantity for jointly replenishment items[J]. InternationalJournal of Production Research, 1991,29(1): 107-114.
  • 10Khouja M, Michalewicz M, Satoskar S. A comparisonbetween genetic algorithms and the RAND method forsolving the joint replenishment problem[J]. ProductionPlanning and Control, 2000, 11(6): 556-564.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部