摘要
随着近年来中国网民数量众多而网络给予了众多网民言论自由,因此网络舆情越来越被关注,对网络舆情的预警也越来越迫切。该文采用了五个指标对“厦门PX事件”、“昆明PX事件”和“宁波PX事件”进行量化描述,通过Matlab建立BP神经网络识别模型中进行学习,然后再对“宁波PX事件”进行预警识别。模型具有较好的识别能力,预警结果的准确率达到了90%以上。
With the greatly ascendance of Chinese netizens for the past few years, the Internet has given the right of free speech to the masses, which making the online-relationship be the topic. The signal of online-relationship is becoming more and more ur-gent. This passage will adopt five calibers pointing to“Xiamen PX incident”,”Kunming PX incident”and“Ningbo PX inci-dent”to have a quantized description. Then, it will forewarn and recognize“Ningbo PX incident”via BP neural international recognition model established by Matlab in order to have a comprehensive study. The model is provided with good recognition ability. Meanwhile the accuracy rate of early-warning reached over 90 percent.
作者
陈乐朋
周家政
CHEN Le-peng, ZHOU Jia-zheng (Zhejiang Wanli University, Ningbo 315000, China)
出处
《电脑知识与技术》
2014年第8期5283-5286,共4页
Computer Knowledge and Technology
基金
本项目受国家级大学生创新创业训练计划项目(201310876017)资助
关键词
网络舆情
BP神经网络
预警
network public opinion
bp neural network
warning