摘要
We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction.It is shown that,in the absence of the on-site interaction,the system possesses the SU(2)symmetry arising from the time reversal symmetry.The influence of the on-site interaction on the symmetry depends on the topology of the networks:The SU(2)symmetry is shown to be the spin rotation symmetry of a simply-connected lattice even in the presence of the Hubbard interaction.On the contrary,the on-site interaction breaks the SU(2)symmetry of a multi-connected lattice.This fact indicates that a discrete spin-orbit coupled system has exclusive features from its counterpart in a continuous system.The obtained rigorous result is illustrated by a simple ring system.
We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction.It is shown that,in the absence of the on-site interaction,the system possesses the SU(2)symmetry arising from the time reversal symmetry.The influence of the on-site interaction on the symmetry depends on the topology of the networks:The SU(2)symmetry is shown to be the spin rotation symmetry of a simply-connected lattice even in the presence of the Hubbard interaction.On the contrary,the on-site interaction breaks the SU(2)symmetry of a multi-connected lattice.This fact indicates that a discrete spin-orbit coupled system has exclusive features from its counterpart in a continuous system.The obtained rigorous result is illustrated by a simple ring system.
基金
supported by the National Natural Science Foundation of China(Grant No.11374163)
the National Basic Research Program of China(Grant No.2012CB921900)