期刊文献+

动态约束下可重构模块机器人分散强化学习最优控制 被引量:5

Decentralized reinforcement learning optimal control for time varying constrained reconfigurable modular robot
下载PDF
导出
摘要 基于ction-critic-identifier(ACI)与RBF神经网络,提出了一种外界动态约束下的可重构模块机器人分散强化学习最优控制方法,解决了存在强耦合不确定性的模块机器人系统的连续时间非线性最优控制问题。文中将机器人动力学模型描述为一个交联子系统的集合,基于连续时间MDPs性能指标,结合ACI与RBF神经网络,对子系统最优值函数,最优控制策略及总体不确定项进行辨识,使系统满足HJB方程下的最优条件,从而使可重构模块机器人子系统渐进跟踪期望轨迹,跟踪误差收敛且有界。采用Lyapunov理论对系统稳定性进行证明,数值仿真验证了所提出的分散控制策略的有效性。 Based on Action-Critic-Identifier (ACI) and Radial Basis Function (RBF) neural network, a novel decentralized reinforcement learning optimal control method for time varying constrained reconfigurable modular robot is presented. The continuous time nonlinear optimal control problem of strongly coupled uncertainty robotic system is solved. The dynamics of the robot is described as a synthesis of interconnected subsystems. As a precondition to the continuous-time MDPs performance indicators, the optimal value function, optimal control policy and global uncertainty of the subsystems are estimated combing with ACI and RBF network. The optimal conditions of HJB equation with regard to the subsystem are satisfied, so that the reconfigurable modular robot system can track the desired trajectory in a short time and the estimation error can converge to zero in finite time. The stability of the system is confirmed by Lyapunov theory. Simulations are performed to illustrate the effectiveness of the proposed decentralized control scheme.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第5期1375-1384,共10页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61374051 60974010) 吉林省科技发展计划项目(20110705)
关键词 自动控制技术 可重构模块机器人 强化学习 非线性最优控制 分散控制 automatic control technology reconfigurable modular robot reinforcement learning nonlinear optimal control decentralized control
  • 相关文献

参考文献13

  • 1Li Yuan-chun, Dong Bo. Decentralized ADRC con- trol for reconfigurable manipulators based on VG STA-ESO of sliding mode[J]. Information-an Inter- national Interdisciplinary Journal, 2012, 15 (6) : 2453- 2465.
  • 2李英,朱明超,李元春.基于速度观测模型的可重构机械臂补偿控制[J].控制理论与应用,2008,25(5):891-897. 被引量:4
  • 3朱明超,李元春.可重构机械臂分散自适应模糊滑模控制[J].吉林大学学报(工学版),2009,39(1):170-176. 被引量:3
  • 4朱明超,李英,李元春,姜日花.基于观测器的可重构机械臂分散自适应模糊控制[J].控制与决策,2009,24(3):429-434. 被引量:6
  • 5Xu Yan-kai, Cao Xi ren. Lebesgue-sampling-based optimal control problems with time aggregation[J]. IEEE Transactions on Automatic Control, 2011, 56 (5): 1097-1109.
  • 6Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control [J]. IEEE Circuits and Systems Magzine, 2009, 9 (3) : 32-50.
  • 7Xu Xin, He Han gen, Hu De-wen. Efficient rein forcement learning using recursive least-squares methods[J]. Journal of Artificial Intelligence Re- search, 2002, 16: 259-292.
  • 8Lewis F L, Liu De-rong. Reinforcement I.earning and Approximate Dynamic Programming for Feed back Control[M}. New York= Wiley IEEE Press, 2012.
  • 9Lewis F L, Syrmos V L. Optimal Control[M]. New York: John Wiley & Sons, Ine, 1995.
  • 10Sassano M, Astolfi A. Dynamic approximate solu tions of the HJ inequality and of the HJB equation for input-affine nonlinear systems[J]. IEEE Trans- actions on Automatic Control, 2012, 57(10) :2490- 2503.

二级参考文献48

  • 1刘英卓,王越超,席宁.类Lyapunov理论在类人形机器人任务空间内跟踪的应用[J].控制理论与应用,2004,21(3):351-356. 被引量:1
  • 2李英,朱明超,李元春.可重构机械臂模糊神经补偿控制[J].吉林大学学报(工学版),2007,37(1):206-211. 被引量:6
  • 3彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175-180. 被引量:23
  • 4丰保民,马广程,温奇咏,王常虹.任务空间内空间机器人鲁棒智能控制器设计[J].宇航学报,2007,28(4):914-919. 被引量:25
  • 5Paredis C J J, Brown H B, Khosla P K. A rapidly deployable manipulator system [ J ]. Robotics and Autonomous Systems, 1997, 21: 289-304.
  • 6Melek W W, Goldenberg A A. Neurofuzzy control of modular and reconfigurable robots [J]. IEEE/ASME Trans on Mechatronics, 2003, 8(3): 381-389.
  • 7Kirchoff S, Melek W W. A saturation-type robust controller for modular manipulators arms [ J ]. Mechatronics, 2007, 17: 175-190.
  • 8Liu G J, Abdul S, Goldenberg A A. Distributed control of modular and reconfigurable robot with torque sensing [J]. Robotica, 2008, 26; 75 84.
  • 9Hsu S. Fu L. A fully adaptive decentralized control of robot manipulators[J]. Automatica, 2006, 42: 1761- 1767.
  • 10Tang Y, Tomizuka M, Guerrero G, et at. Decentralized robust control of mechanical systems[J]. IEEE Trans on Automatic Control, 2000. 45(4): 771-775.

共引文献40

同被引文献43

  • 1刘富,安毅,董博,李元春.基于ADP的可重构机械臂能耗保代价分散最优控制[J].吉林大学学报(工学版),2020,50(1):342-350. 被引量:5
  • 2杨轶霞.基于HMI和PLC的多功能交通信号灯自动控制系统[J].自动化与仪器仪表,2016(1):15-16. 被引量:3
  • 3Hashimoto M, Kiyosawa T, Paul R P. A torque sensing technique for robots with harmonic drives[J]. IEEE Trans on Robotics and Automation, 1993, 9(1): 108-116.
  • 4Tuttle T D, Seering W P. A nonlinear model of a harmonic drive gear transmission[J]. IEEE Trans on Robotics and Automation, 1996, 12(3): 368-374.
  • 5Kennedy C W, Desai J P. Modeling and control of the Mitsubishi pa-10 robot arm harmonic drive system[J]. IEEE/ASME Trans on Mechatronics, 2005, 10(3): 263-274.
  • 6Zhang H, Ahmad S, Liu G J. Modeling of torsional compliance and hysteresis behaviors in harmonic drives[J]. IEEE/ASME Trans on Mechatronics, 2015, 20(1): 178-184.
  • 7Curt P, Thomas R J, Deming S. A high-fidelity harmonic drive model[J]. ASME J of Dynamic Systems, Measurement, and Control, 2012, 134(1): 457-461.
  • 8Albu-Schaffer A, Ott C, Hirzinger G. A unified passivity-based control framework for position, torque, and impedance control of flexible joint robots[J]. The Int J of Robotics Research, 2007, 26(1): 23-39.
  • 9Liu G, Abdul S, Goldenberg A A. Distributed control of modular and reconfigurable robot with torque sensing[J]. Robotica, 2008, 26(1): 75-84.
  • 10Liu G, Liu Y, Goldenberg A A. Design, analysis, and control of a spring-assisted modular and reconfigurable robot[J]. IEEE/ASME Trans on Mechatronics, 2011, 16(4): 695-706.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部