期刊文献+

一种微阵列数据降维新方法 被引量:1

Novel method for microarray data dimension reduction
下载PDF
导出
摘要 提出一种二阶段并行基因选择方法(TPM),可以获得最优特征子集。针对以往算法易于陷入局部极值的不足,提出了一种模糊多种群粒子群(FMP),可以有效地扩展搜索空间。通过在leukemia、colon、breast cancer、lung carcinoma、brain cancer五个数据集上的测试,验证了本文方法不仅可以获得更优特征子集和更高的分类精度,而且可以选择尺寸更小的特征子集。本文的研究成果可为基因表达领域提供一种新的思路。 A two stage parallel gene selection method (TPM) for obtaining the optimal feature subset is proposed. A fuzzy multi-swarm particle optimization (FMP) is also proposed to extend the searching spaces, to overcome the problem of traditional algorithm to be locked to local optimum. The performance of the TMP is evaluated on five microarray datasets (leukemia dataset, colon dataset, breast cancer dataset, lung eareinoma dataset and brain cancer dataset). The comparison results show that the proposed method not only gets better quality of feature subset and higher classification accuracy, but also generates smaller feature subsets. The results of this study could provide a new idea to the field of gene expression.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第5期1429-1434,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国土资源部重大专项项目(201311192) 中国博士后基金项目(2013M530981) 国家自然科学基金项目(61303113)
关键词 计算机应用 基因选择 特征选择 微阵列 粒子群 computer application gene selection feature selection microarray particle swarm optimization
  • 相关文献

参考文献5

二级参考文献50

  • 1金弟,刘大有,黄晶,何东晓,王新华.基于免疫和进化扩散算法的全局优化问题求解算法[J].吉林大学学报(工学版),2009,39(1):124-130. 被引量:3
  • 2刘杰,金弟,杜惠君,刘大有.一种新的混合特征选择方法RRK[J].吉林大学学报(工学版),2009,39(2):419-423. 被引量:7
  • 3Polat K, Gunes S. Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation [J]. Digital Signal Processing, 2006, 16(6): 889-901.
  • 4Polat K, Gunes S. Prediction of hepatitis disease based on principal component analysis and artificial immune recognition system[J]. Applied Mathematics and Computation, 2007, 189(2):1282-1291.
  • 5Dogantekin E, Dogantekin A, Avci D. Automatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference system[J]. Expert Systems with Applications, 2009, 36(8):11282-11286.
  • 6Osuna E, Freund R, Girosit F. Training support vector machines: application to face detection[C]/// Proceedings of Computer Vision and Pattern Recognition Puerto, Rico, 1997:130-136.
  • 7Joachims T, Nedellec C, Rouveirol C. Text categorization with support vector machines: learning with many relevant[C]//Proeeedings of the lOth European Conference on Machine Learning,1998: 137-142.
  • 8Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1995.
  • 9Vapnik V. Statistical I.earning Theory[M]. New York: Wiley, 1998.
  • 10Feng J, Williams P. The generalization error of the symmetric and scaled support vector machines[J]. IEEE Transactions on Neural Network, 2001, 12: 1255-1260.

共引文献52

同被引文献10

  • 1Sun S,Peng Q,Shakoor A.A kernel-based multivariate feature selection method for micro-array data classification[J].Plo S one,2014,9(7):102541.
  • 2Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:Theory and applications[J].Neuro-computing,2006,70(1):489-501.
  • 3Chacko B P,Krishnan V R V,Raju G,et al.Handwritten character recognition using wavelet energy and extreme learning machine[J].International Journal of Machine Learning and Cybernetics,2012,3(2):149-161.
  • 4Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 5Wang Y,Klijn J G M,Zhang Y,et al.Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer[J].The Lancet,2005,365(9460):671-679.
  • 6Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[C]∥Proceedings of the National Academy of Sciences,2001:13790-13795.
  • 7张丽娟,李舟军.微阵列数据癌症分类问题中的基因选择[J].计算机研究与发展,2009,46(5):794-802. 被引量:19
  • 8于化龙,高尚,赵靖,秦斌.基于过采样技术和随机森林的不平衡微阵列数据分类方法研究[J].计算机科学,2012,39(5):190-194. 被引量:9
  • 9李强,石陆魁,刘恩海,王歌.基于流形学习的基因微阵列数据分类方法[J].郑州大学学报(工学版),2012,33(5):121-124. 被引量:1
  • 10金益,姜真杰.核主成分分析与典型相关分析相融合的人脸识别[J].计算机应用与软件,2014,31(1):191-193. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部