期刊文献+

融合全局灰度模板的改进CT算法

Advanced CT algorithm via global intensity template
下载PDF
导出
摘要 针对压缩跟踪(CT)算法在构建判别表观模型过程中提取背景像素稀疏Haar-like特征导致目标跟踪漂移加重的问题,提出一种融合归一化灰度直方图全局特征模板的改进算法。与局部特征模板相比,全局特征模板更适于对目标和背景进行判别。改进算法基于压缩感知理论提取局部稀疏Haar-like特征构建表观模型M1得到跟踪目标的第一个估计参数H(v),提取归一化全局灰度直方图特征构建表观模型M2得到跟踪目标的第二个估计参数HD,使用H(v)和HD的线性组合作为表观模型利用贝叶斯分类器进行目标跟踪。实验结果表明,改进的算法提升了算法的鲁棒性,减轻了漂移问题。 An advanced CT algorithm based on global feature template of normalized intensity histogram is proposed in order to solve the worse drift problem of object trakcing caused by extracting sparse Haar-like features from pixels in background area during constructing discriminative appearance model in Compressive Tracking(CT)algorithm. Com-pared to local feature template, global feature template is sensitive to target and background. An appearance model named M1 based on compressive sensing is constructed using local sparse Haar-like features and thus one estimation value called H(v)is obtained. The second appearance model called M2 is constructed with normalized global intensity histogram and another estimation value named HD is obtained. Both values are used to track objects via naive bayes classifier. The result of experiments indicates that advanced algorithm improves robustness and alleviates drift problem.
出处 《计算机工程与应用》 CSCD 2014年第18期171-174,共4页 Computer Engineering and Applications
基金 沈阳市科技创新专项资金(No.F13-316-1-73)
关键词 稀疏Haar-like特征 全局灰度模板 归一化直方图 sparse Haar-like feature global intensity template normalized histogram
  • 相关文献

参考文献15

  • 1Yilmaz A,Javed O,Shah M.Object tracking-a survey[J]. ACM Computing Survey,2006,38(4) : 1-45.
  • 2郭岩松,杨爱萍,侯正信,何宇清.压缩感知目标跟踪[J].计算机工程与应用,2011,47(32):4-6. 被引量:4
  • 3Adam A,Rivlin E,Shimshoni I.Robust fragments-based tracking using the integral histogram[C]//IEEE Interna- tional Conference on Computer Vision and Pattern Rec- ognition, 2006.
  • 4Ross D,Lim J,Lin R S,et al.Incremental learning for robust visualtracking[J].International Journal of Computer Vision, 2008,77(1/3) : 125-141.
  • 5Grabner H, Grabner M, Bischof H.Real-time tracking via online boosting[C]//British Machine Vision Conference, 2006:47-56.
  • 6Wrigh J T,Yang A Y,Ganesh A,et al.Robust face recog- nition via sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2009,31 (2) : 210-227.
  • 7Zhong Wei,Lu Huchuan,Yang M H.Robust object track- ing via sparsity-based collaborative model[C]//IEEE Inter-national Conference on Computer Vision and Pattern Rec- ognition, 2012.
  • 8Mei X,Ling H.Robust visual tracking using L1 minimi- zation[C]//IEEE International Conference on Computer Vision, 2009.
  • 9Li H, Shen C, Shi Q.Real-time visual tracking using com- pressive sensing[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2011 : 1305-1312.
  • 10Avidan S.Ensemble tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29 (2) : 261-271.

二级参考文献27

  • 1Cevher V, Sankaranarayanan A, Duarte M, et al.Compressive sensing for background subtraction[C]//Proc European Conf on Computer Vision, Marseille,France, 2008.
  • 2Dufaux F, Ouaret M,Abdeljaoued Y, et al.Privacy enabling tech- nology for video surveillance[C]//Proeeedings of SPIE, 2006,6250:205-216.
  • 3Candes E.Compressive sampling[C]//Intemational Congress of Math- ematicians, Madrid, Spain, 2006.
  • 4Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory, 2006,52(4) : 1289-1306.
  • 5Boyd S, Vandenberghe L.Convex optimization[M].[S.1.]: Cambridge University Press,2004.
  • 6Berg E V,Friedlander M EIn pursuit of a root,TR-2OO7-19[R]. Department of Computer Science, University of British Colum- bia, 2007.
  • 7Candes E, Wakin M B, Boyd S EEnhancing sparsity by reweighted ll minimization[J].Joumal of Fourier Analysis and Applications,2008.
  • 8Candes E,Romberg J,Tao T.Stable signal recovery from incom- plete and inaccurate measurements[J].Communieations on Pure and Applied Mathematics, 2006,59: 1207-1223.
  • 9Piccardi M.Background subtraction techniques: a review[C]/flEEE International Conference on Systems, Man and Cybernetics, 2004 .. 3099 -3104.
  • 10Ristic B,Arulampalam S,Gordon N.Beyond the Kalman filter: particle filters for tracking applications[M].[S.l.]:Artech House, 2004.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部