期刊文献+

多特征融合的自适应性粒子滤波跟踪算法 被引量:6

Adaptive particle filter tracking algorithm by fusing multi-features
下载PDF
导出
摘要 为提高粒子滤波视觉目标跟踪算法的实时性与鲁棒性,提出了一种基于多特征融合的自适应性粒子滤波跟踪算法。该算法利用颜色和结构特征表示目标,将两者融合于粒子滤波的框架中,利用融合后的信息计算粒子的权值,以降低算法受目标形变及复杂环境的影响。同时,根据跟踪预测的准确程度动态计算跟踪所需的粒子数目,对采样粒子集进行自适应调整,以提高粒子质量,降低粒子数量,减少算法运算时间。实验结果表明,所提算法对于每帧图像的平均计算时间相对于传统混合跟踪算法缩短了将近一半,而且算法的鲁棒性较强。 To improve the real-time and robustness performance of particles filter algorithm for tracking vision objects, an adaptive particle filter tracking method based on multi-feature fusion is proposed. The proposed method uses the color and structural features to present the interested target. These features are integrated in the frame of particle filter, and the weights of particles are calculated by this integration, in order to conquer the distractions from the target deformation and the complex background. Meanwhile, particle number is calculated dynamically according to the tracking accuracy, and the particle-set is also adjusted adaptively, in order to promote the quality of particle and reduce its quantity, and then the cost of calculation is reduced. The experimental results show that the average of each frame’s operation time of the pro-posed method is nearly half of classic hybrid algorithm, and the proposed method is of higher robustness.
出处 《计算机工程与应用》 CSCD 2014年第18期178-181,共4页 Computer Engineering and Applications
基金 河南省教育厅自然科学研究计划项目(No.12A520021)
关键词 目标跟踪 粒子滤波 多特征融合 粒子集自适应调整 object tracking particle filter multi-features fusion particle-set being adjusted adaptively
  • 相关文献

参考文献7

二级参考文献40

  • 1李由,张恒,李立春.基于多测量融合的粒子滤波跟踪算法[J].国防科技大学学报,2007,29(5):26-30. 被引量:8
  • 2查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 3马加庆,韩崇昭.一类基于信息融合的粒子滤波跟踪算法[J].光电工程,2007,34(4):22-25. 被引量:15
  • 4常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[ J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2003, 25(5) :564-575.
  • 6Nummiaro K, Koller-Meier E, Van-Gool L. An adaptive color-based particle filter [ J ]. Image and Vision Computing, 2003, 21 ( 1 ) :99-110.
  • 7Birchfleld S, Elliptical head tracking using intensity gradients and color histograms [ A ]. In : Proceedings of the International Conference on Computer Vision and Pattern Recognition [ C ], Santa Barbara, CA, USA, 1998: 232-237.
  • 8Conaire C, Connor N. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers [ A ]. In: Proceedings of Conference on Machine Vision and Applications[ C ] , New York, NY, USA, 2007:483-494.
  • 9Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles [ J ]. Proceedings of the IEEE,2004, 92 ( 3 ) :495-513.
  • 10Brasnett P, Mihayhova L, Bull D. Sequential monte carlo tracking by fusing multiple cues in video sequences[ J]. Image Vision Computing, 2007, 25(8) :1217-1227.

共引文献47

同被引文献40

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3Zhang K, Somh H.Real-time visual tracking via onlineweighted multiple instance learning[J].Pattern Recognition, 2013,46(1) :397-411.
  • 4Rathi Y,Vaswani N,Tannenbaum A.A generic framework for tracking using particle filter with dynamic shape prior[J]. IEEE Transactions on Image Process, 2007,16 ( 5 ) : ! 370-1382.
  • 5Freedman D,Zhang T.Active contours for tracking distri- butions[J].IEEE Transactions on Image Processing,2004, 13(4) :518-526.
  • 6Zhang T,Freedman D.lmproving performance of distri- bution tracking through background mismatch[J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2005,27(2 ) : 282-287.
  • 7Ma B, Wu Y W.Learning distribution metric for object contour tracking[C]//International Conference on Multimedia Technology(ICMT), Hangzhou, China, 2011 : 3120-3123.
  • 8Ning J F,Zhang L,Zhang D.Joint registration and active contour segmentation for object tracking[J].IEEE Trans- actions on Circuits and Systems for Video Technology, 2013,23(9). 1589-1597.
  • 9Boltz S,Nielsen F.Earth mover's distance on superpix- els[C]//IEEE International Conference on Image Processing I C1P ), Hong Kong, China, 2010,26 ( 17 ) : 4597-4600.
  • 10Zhao Q,Yang Z,Tao H.Differential earth mover's dis- tance with its applications to visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2008,32( 2 ) : 274-287.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部