期刊文献+

基于多源信息的智能电网动态层次化故障诊断 被引量:3

Dynamic Hierarchical Fault Diagnosis of Intelligent Power Network Based on the Multi-source Information
下载PDF
导出
摘要 针对智能电网结构日趋复杂、系统信息呈多元化发展的特点,提出了一种新颖的故障诊断方法,包括用于快速诊断简单故障的开关层,着力解决开关和保护异动情况下复杂故障的馈线层,以及准确判断复杂系统环境下多类型故障的变电站层;同时采用动态跳转策略,调整诊断入口和结构.并且,将改进的深度优先搜索算法、Petri网推理与直觉不确定粗糙集约简方法分别应用于各层诊断中.仿真算例表明,本方法增强了各层诊断的适应性,提高了故障诊断的效率与精度,且能准确诊断多类型复杂故障,具有良好的实践应用价值. Considering the complicated structure and the diversified information system of intelligent power network, a novel method for fault diagnosis was proposed. In the proposed method there were three parts including switch layer used for the simple fault diagnosis, feeder layer strived to resolve complex fault in the case of abnormal switch and protection information, and substation layer used to judge multi-type fault in the complex system. Simultaneously, dynamic diagnosis strategy was adopted to adjust diagnostic entrance and structure longitudinally. And the improved depth-first searching algorithm, Petri net reasoning and intuitionistic uncertainty-rough sets theory were applied to each layer respectively in the diagnosis. The simulation results showed that the adaptability of each layer diagnosis is enhanced, and the efficiency and accuracy of fault diagnosis are improved. In addition, kinds of complex fault can be accurately diagnosed with good practical application value.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第9期1221-1224,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61203026) 中央高校基本科研业务费专项资金资助项目(N110304004 N110404031)
关键词 故障诊断 多源信息 层次化 PETRI网 直觉不确定粗糙集 fault diagnosis multi-source information multi-layer Petri net intuitionisticuncertainty-rough sets
  • 相关文献

参考文献8

二级参考文献102

共引文献244

同被引文献29

  • 1周玉兰,王玉玲,赵曼勇.2004年全国电网继电保护与安全自动装置运行情况[J].电网技术,2005,29(16):42-48. 被引量:104
  • 2孟祥萍,刘春玲,耿卫星,潘莹,司春旺.利用保护、断路器状态信息进行电网故障的诊断[J].宁夏工程技术,2006,5(3):261-264. 被引量:4
  • 3Cho H J,Park J K.An expert system for fault section diagnosis of power system using fuzzy relations[J].IEEE Transactions on Power Systems,1996,12(1):342-347.
  • 4Lee H J,Park D Y,Ahn B S,et al.A fuzzy expert system for the integrated fault diagnosis[J].IEEE Transaction on Power Delivery,2000,15(2):833-838.
  • 5De Kleer J,Williams B C.Diagnosing multiple faults[J].Artificial Intelligence,1987,32(1):97-130.
  • 6De Kleer J,Mackworth A K,Peiter R.Characterizing diagnoses and systems[J].Artificial Intelligence,1992,56(2/3):197-222.
  • 7Lampetrti G,Zanella M.Flexible diagnosis of discrete event systems by similarity-based reasoning techniques [J].Artificial Intelligence,2006,170(3):232-297.
  • 8Chittar L,Ranon R.Hierarchical model-based diagnosis based on structural abstraction[J].Artificial Intelligence,2004,155(1/2):147-182.
  • 9Lampetrti G,Zanella M,Zanni D.Incremental processing of temporal observations in model-based reasoning [J].AI Communications,2007,20(1):27-37.
  • 10Borzsonyi S,Kossmann D,Stocker K.The skyline operator[C]//Proceeding of 17th International Conference on Data Engineering.Heidelberg,2001:421-430.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部